Table 2 RetinaNet and YOLOv5 single-model results comparing performance with the standard fixed decision threshold and applying the various avalanche schemes. \(\gamma\) represents the constant rate reduction between each decision threshold in the avalanche scheme.

From: High sensitivity methods for automated rib fracture detection in pediatric radiographs

Model

Scheme

Precision

Recall

F2

RetinaNet

Standard

0.892 ± 0.015

0.430 ± 0.014

0.480 ± 0.014

Posterior

0.141 ± 0.015

0.872 ± 0.013

0.427 ± 0.026

Conservative

0.530 ± 0.023

0.730 ± 0.015

0.679 ± 0.010

\(\gamma =0.15\)

0.304 ± 0.028

0.766 ± 0.015

0.586 ± 0.019

\(\gamma =0.20\)

0.256 ± 0.023

0.770 ± 0.024

0.548 ± 0.015

YOLOv5

Standard

0.897 ± 0.032

0.434 ± 0.040

0.484 ± 0.037

Posterior

0.759 ± 0.164

0.647 ± 0.101

0.652 ± 0.051

Conservative

0.831 ± 0.101

0.590 ± 0.075

0.622 ± 0.053

\(\gamma =0.15\)

0.814 ± 0.120

0.587 ± 0.077

0.615 ± 0.050

\(\gamma =0.20\)

0.816 ± 0.114

0.593 ± 0.087

0.621 ± 0.060

  1. Bolded values highlight the highest value for each metric for each model.