Table 1 Lattice lengths at the local minima \(\ell _{j}^{(m)}\) and local maxima \(\ell _{j}^{(M)}\) of the density criterion \(N\widetilde{\sigma }\) for the \(J_{x}\) and homogeneous lattice.

From: The Goldilocks principle of learning unitaries by interlacing fixed operators with programmable phase shifters on a photonic chip

z

\(J_{x}\)

Homogeneous

z

\(J_{x}\)

Homogeneous

\(\ell _{1}^{(m)}\)

0.48781

1.1968

\(\ell _{1}^{(M)}\)

0.6579

1.6099

\(\ell _{2}^{(m)}\)

0.78735

1.9211

\(\ell _{2}^{(M)}\)

0.9256

2.2285

\(\ell _{3}^{(m)}\)

1.11393

2.8088

\(\ell _{3}^{(M)}\)

1.2227

2.9441

\(\ell _{4}^{(m)}\)

1.32647

3.3290

\(\ell _{4}^{(M)}\)

1.4293

3.5156

\(\ell _{5}^{(m)}\)

1.52812

4.1988

\(\ell _{5}^{(M)}\)

\(\pi /2\)

4.3984

\(\ell _{6}^{(m)}\)

 

5.1835

\(\ell _{6}^{(M)}\)

 

4.8832

\(\ell _{7}^{(m)}\)

 

5.6182

\(\ell _{7}^{(M)}\)

 

5.4811

   

\(\ell _{8}^{(M)}\)

 

6.1544