Table 1 A summary of the opinion pooling process.

From: EquiCity game: a mathematical serious game for participatory design of spatial configurations

Problem type

Primal problem

Dual problem

Description

Distribute an investment (colour) amongst actors through an interaction network across sites

Distribute an investment (colour) amongst sites through an interaction network across actors

Network

\(\textbf{P}=\textbf{X}\textbf{C}\)

\(\textbf{Q}=\textbf{C}\textbf{X}\)

Markov chain

\(\varvec{\alpha }^{(t)}={\alpha }^{(t-1)}\textbf{P}\)

\(\varvec{\beta }^{(t)}={\beta }^{(t-1)}\textbf{Q}\)

Steady state (definition)

\(\displaystyle \varvec{\alpha }:=\lim _{t \rightarrow \infty }\varvec{\alpha }^{(t)}\)

\(\varvec{\alpha }\textbf{P}=\varvec{\alpha }\)

\(\varvec{\alpha }\textbf{1}=1\)

\(\displaystyle \varvec{\beta }:=\lim _{t \rightarrow \infty }\varvec{\beta }^{(t)}\)

\(\varvec{\beta }\textbf{Q}=\varvec{\beta }\)

\(\varvec{\beta }\textbf{1}=1\)

Steady State (solution33,  pp.250–252)

\(\displaystyle \varvec{\alpha }\left[ \left( \textbf{I}_{m\times m}-\textbf{P}\right) |\textbf{1}_{m\times 1}\right] =\left[ \textbf{0}_{1\times m}|1 \right] \)

\(\displaystyle \underbrace{\left[ \left( \textbf{I}_{m\times m}-\textbf{P}\right) |\textbf{1}_{m\times 1}\right] ^T)}_{\textbf{M}} \underbrace{\varvec{\alpha }^T}_{\textbf{x}}=\underbrace{\left[ \textbf{0}_{1\times m}|1 \right] ^T}_{\textbf{a}}\)

\(\displaystyle \varvec{\alpha }^T=\arg \min _{\textbf{x}}{\Vert \textbf{M} \textbf{x}-\textbf{a}\Vert ^2_2}\)

\(\displaystyle \varvec{\beta }\left[ \left( \textbf{I}_{n\times n}-\textbf{Q}\right) |\textbf{1}_{n\times 1}\right] =\left[ \textbf{0}_{1\times n}|1 \right] \)

\(\displaystyle \underbrace{\left[ \left( \textbf{I}_{n\times n}-\textbf{Q}\right) |\textbf{1}_{n\times 1}\right] ^T)}_{\textbf{N}} \underbrace{\varvec{\beta }^T}_{\textbf{y}}=\underbrace{\left[ \textbf{0}_{1\times n}|1 \right] ^T}_{\textbf{b}}\)

\(\displaystyle \varvec{\beta }^T=\arg \min _{\textbf{y}}{\Vert \textbf{N} \textbf{y}-\textbf{b}\Vert ^2_2}\)

Duality

\(\varvec{\alpha }=\varvec{\beta }\textbf{C}\)

\(\varvec{\beta }=\varvec{\alpha }\textbf{X}\)