Table 1 A summary of the opinion pooling process.
From: EquiCity game: a mathematical serious game for participatory design of spatial configurations
Problem type | Primal problem | Dual problem |
|---|---|---|
Description | Distribute an investment (colour) amongst actors through an interaction network across sites | Distribute an investment (colour) amongst sites through an interaction network across actors |
Network | \(\textbf{P}=\textbf{X}\textbf{C}\) | \(\textbf{Q}=\textbf{C}\textbf{X}\) |
Markov chain | \(\varvec{\alpha }^{(t)}={\alpha }^{(t-1)}\textbf{P}\) | \(\varvec{\beta }^{(t)}={\beta }^{(t-1)}\textbf{Q}\) |
Steady state (definition) | \(\displaystyle \varvec{\alpha }:=\lim _{t \rightarrow \infty }\varvec{\alpha }^{(t)}\) \(\varvec{\alpha }\textbf{P}=\varvec{\alpha }\) \(\varvec{\alpha }\textbf{1}=1\) | \(\displaystyle \varvec{\beta }:=\lim _{t \rightarrow \infty }\varvec{\beta }^{(t)}\) \(\varvec{\beta }\textbf{Q}=\varvec{\beta }\) \(\varvec{\beta }\textbf{1}=1\) |
Steady State (solution33, pp.250–252) | \(\displaystyle \varvec{\alpha }\left[ \left( \textbf{I}_{m\times m}-\textbf{P}\right) |\textbf{1}_{m\times 1}\right] =\left[ \textbf{0}_{1\times m}|1 \right] \) \(\displaystyle \underbrace{\left[ \left( \textbf{I}_{m\times m}-\textbf{P}\right) |\textbf{1}_{m\times 1}\right] ^T)}_{\textbf{M}} \underbrace{\varvec{\alpha }^T}_{\textbf{x}}=\underbrace{\left[ \textbf{0}_{1\times m}|1 \right] ^T}_{\textbf{a}}\) \(\displaystyle \varvec{\alpha }^T=\arg \min _{\textbf{x}}{\Vert \textbf{M} \textbf{x}-\textbf{a}\Vert ^2_2}\) | \(\displaystyle \varvec{\beta }\left[ \left( \textbf{I}_{n\times n}-\textbf{Q}\right) |\textbf{1}_{n\times 1}\right] =\left[ \textbf{0}_{1\times n}|1 \right] \) \(\displaystyle \underbrace{\left[ \left( \textbf{I}_{n\times n}-\textbf{Q}\right) |\textbf{1}_{n\times 1}\right] ^T)}_{\textbf{N}} \underbrace{\varvec{\beta }^T}_{\textbf{y}}=\underbrace{\left[ \textbf{0}_{1\times n}|1 \right] ^T}_{\textbf{b}}\) \(\displaystyle \varvec{\beta }^T=\arg \min _{\textbf{y}}{\Vert \textbf{N} \textbf{y}-\textbf{b}\Vert ^2_2}\) |
Duality | \(\varvec{\alpha }=\varvec{\beta }\textbf{C}\) | \(\varvec{\beta }=\varvec{\alpha }\textbf{X}\) |