Table 3 Comparison of the distributed model with the centralised model and with the local model (mean for all model and all columns).

From: Evaluating distributed-learning on real-world obstetrics data: comparing distributed, centralized and local models

  

M

SD

95% CI

P

AUPRC

distributed

0.691

0.216

(0.686, 0.696)

Centralised

0.706

0.225

(0.701, 0.711)

1.10e17

Local

0.659

0.220

(0.654, 0.665)

4.71e05

AUROC

Distributed

0.723

0.182

(0.718, 0.727)

Centralised

0.729

0.180

(0.725, 0.734)

2.98e26

Local

0.692

0.164

(0.688, 0.695)

2.48e02

MAE

Distributed

2.370

1.608

(2.315, 2.425)

Centralised

2.365

1.923

(2.298, 2.431)

2.23e04

Local

2.527

1.799

(2.465, 2.589)

9.01e−01

RMSE

Distributed

21.171

46.078

(19.584, 22.757)

Centralised

19.839

28.645

(18.853, 20.826)

2.92e02

Local

23.771

49.776

(22.057, 25.485)

1.63e−01

  1. 2-sample T-test for the means was used as hypothesis test. Bold for P value below 0.05. AUPRC and AUROC for categorical target variable and RMSE and MAE for continuous target variable.