Table 2 Details of the TrashBox dataset.

From: Enhancing trash classification in smart cities using federated deep learning

Trash classes

Sub-classes

No. of images

Total

Cardboard

Assorted cardboard objects

2414

2414

E-waste

Electric wires

568

2883

Laptops and smartphones

774

Small appliances

926

Electrical chips

615

Metal

Beverage cans

1000

2586

Construction scrap

539

Spray cans

500

Metal containers

505

Miscellaneous metal

42

Plastic

Plastic bags

504

2669

Plastic bottles

571

Plastic containers

580

Plastic cups

507

Cigarette butts

507

Paper

Tetra pak

794

2695

News paper

200

Paper cups

639

Other paper objects

1062

Glass

Assorted glass objects

2528

2528