Table 6 The classification accuracy of the KNN with feature selection (VMD-based FE methods).

From: Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy

No. of Features

Classification accuracy % (no. of channels)

VMD + KFD

VMD + TeEng

VMD + SuEn

VMD + LBP

VMD + IQR

VMD + ShEn

1

–

61.94

65.42

55.21

57.22

–

2

73.75

87.01

81.39

80.35

80.97

–

3

81.67

88.68

84.10

84.79

84.72

82.92

4

87.57

91.32

88.26

86.39

87.78

84.58

5

89.31

91.94

–

88.33

88.13

85.55

6

90.83

92.22

88.89

88.96

89.24

85.83

7

91.73

–

90.21

90.42

–

86.67

8

91.74

92.29

90.97

90.90

–

88.06

9

92.22

92.43

91.11

91.11

–

88.40

10

–

–

91.53 (6)

91.25

89.51

88.47

11

–

92.57

–

91.39

–

88.68

12

–

92.71 (6)

–

91.53

89.65

88.96

13

–

–

–

91.67

89.86 (9)

-

14

–

–

–

–

–

89.10 (8)

15

–

–

–

91.74

–

–

16

92.29

–

–

–

–

–

17

92.36

–

–

–

–

–

18

–

–

–

91.88

–

–

19

92.57 (11)

–

–

–

–

–

20

–

–

–

91.94 (11)

–

–

All (133)

53.26 (19)

55.28 (19)

62.36 (19)

63.61 (19)

67.15 (19)

69.24 (19)

  1. Significant values are in [bold].