Table 4 Compare of Acc and \(F_1\)-score to other models in the PhysioNet Challenge 2017 dataset.

From: ECG autoencoder based on low-rank attention

Literatures

Application

Method

\(F_1\)-score

Acc

Dighanchal Banerjee et al28

AF classification

SNN

–

0.770

Wang et al29

AF detection

DPRNN

0.829

0.845

Christopher Snyder et al16

AF classification

DNN

–

0.740

Fayyazifar30

AF detection

NAS

0.824

0.842

Chen et al31

AF detection

XGBoost

0.805

0.838

Zihlmann et al32

AF classification

CRNN

0.746

0.792

Aoxiang Zhang et al33

AF classification

RANet

0.817

-

Jia Xie et al34

AF classification

Bi-LSTMAttns

0.823

0.844

Yongyong Chen et al35

AF detection

QRS detection

-

0.846

Ours

AF classification

LRA-autoencoder

0.843

0.850