Table 4 Compare of Acc and \(F_1\)-score to other models in the PhysioNet Challenge 2017 dataset.
Literatures | Application | Method | \(F_1\)-score | Acc |
|---|---|---|---|---|
Dighanchal Banerjee et al28 | AF classification | SNN | – | 0.770 |
Wang et al29 | AF detection | DPRNN | 0.829 | 0.845 |
Christopher Snyder et al16 | AF classification | DNN | – | 0.740 |
Fayyazifar30 | AF detection | NAS | 0.824 | 0.842 |
Chen et al31 | AF detection | XGBoost | 0.805 | 0.838 |
Zihlmann et al32 | AF classification | CRNN | 0.746 | 0.792 |
Aoxiang Zhang et al33 | AF classification | RANet | 0.817 | - |
Jia Xie et al34 | AF classification | Bi-LSTMAttns | 0.823 | 0.844 |
Yongyong Chen et al35 | AF detection | QRS detection | - | 0.846 |
Ours | AF classification | LRA-autoencoder | 0.843 | 0.850 |