Table 3 The tested models and hyperparameter settings.
Group | Model | Name | Parameters |
|---|---|---|---|
Evolutionary | GA-ELM | Genetic Algorithm55 | Crossover probability \(p_{c} = 0.85\) and the mutation probability \(p_{m} = 0.05\) |
CRO-ELM | Coral Reefs Optimization56 | \(p_{o} = 0.85\), \(F_{b} = 0.9\), \(F_{a} = 0.1\), \(F_{d} = 0.1\), \(P_{d} = 0.1\), \(GCR = 0.1\), gamma \(\gamma_{min} = 0.02\), gamma \(\delta_{max} = 0.02\) | |
Swarm | AGTO-ELM | Artificial Gorilla Troops Optimization57 | \(p = 0.05\), \(w = 0.8\), updating coefficient \(beta = 3.0\) |
DMOA-ELM | Dwarf Mongoose Optimization Algorithm58 | N/A | |
HGS-ELM | Hunger Games Search59 | \(pup = 0.03\), \(LH = 1000\) | |
WOA-ELM | Whale Optimization Algorithm60 | N/A | |
Physics | NRO-ELM | Nuclear Reaction Optimization61 | N/A |
HGSO-ELM | Henry Gas Solubility Optimization62 | Number of clusters \(n_{clusters} = 2\) | |
ASO-ELM | Atom Search Optimization63 | Depth weight \(\alpha = 10\), multiplier \(\beta = 0.2\) | |
Human | GSKA-ELM | Gaining Sharing Knowledge-based Algorithm64 | \(p_{b} = 0.1\), \(k_{f} = 0.5\), knowledge ratio \(k_{r} = 0.9\),\(k_{g} = 5\) |
LCO-ELM | Life Choice-based Optimization65 | Step size \(r_{1} = 2.35\) | |
Biology | SMA-ELM | Slime Mould Algorithm66 | Probability threshold \(p_{t} = 0.03\) |
SOA-ELM | Seagull Optimization Algorithm67 | Frequency of employing \(fc = 2\) | |
TSA-ELM | Tunicate Swarm Algorithm68 | N/A | |
System | AEO-ELM | Artificial Ecosystem-based Optimization54 | N/A |
Music | HS-ELM | Harmony Search69 | Consideration rate \(c_{r} = 0.95\), pitch adjustment rate \(pa_{r} = 0.05\) |
Math | GBO-ELM | Gradient-Based Optimizer70 | \(p_{r} = 0.5\), \(\beta_{min} = 0.2\),\(\beta_{max} = 1.2\) |
PSS-ELM | Pareto-like Sequential Sampling | Acceptance rate \(ar = 0.9\), \(sampling = LHS\) (Latin-Hypercube) | |
INFO-ELM | weighted meaN oF vectOrs | N/A | |
RUN-ELM | RUNge Kutta optimizer | \(a = 20, b = 12\) |