Table 2 Comparison of discriminative features of 11 machine learning models in testing set.

From: Exploring the relationship between heavy metals and diabetic retinopathy: a machine learning modeling approach

Characteristics

SVM

NN

MLP

GP

GBM

LR

NB

XGB

C5.0

KNN

RF

Apparent prevalence

0.21(0.08, 0.41)

0.21(0.08, 0.41)

0.25(0.11, 0.45)

0.14(0.06, 0.27)

0.78(0.71, 0.83)

0.14(0.06, 0.27)

0.43(0.24, 0.63)

0.18(0.09, 0.31)

0.18(0.06, 0.37)

0.21(0.08, 0.41)

0.82(0.76, 0.87)

True prevalence

0.32(0.16, 0.52)

0.32(0.16, 0.52)

0.32(0.16, 0.52)

0.18(0.09, 0.31)

0.79(0.73, 0.85)

0.18(0.09, 0.31)

0.32(0.16, 0.52)

0.18(0.09, 0.31)

0.32(0.16, 0.52)

0.32(0.16, 0.52)

0.79(0.73, 0.85)

Sensitivity

0.56(0.21, 0.86)

0.56(0.21, 0.86)

0.67(0.30, 0.93)

0.56(0.21, 0.86)

0.96(0.92, 0.98)

0.56(0.21, 0.86)

0.89(0.52, 1.00)

0.78(0.40, 0.97)

0.56(0.21, 0.86)

0.56(0.21, 0.86)

1.00(0.98, 1.00)

Specificity

0.95(0.74, 1.00)

0.95(0.74, 1.00)

0.95(0.74, 1.00)

0.95(0.83, 0.99)

0.93(0.81, 0.99)

0.95(0.83, 0.99)

0.79(0.54, 0.94)

0.95(0.83, 0.99)

1.00(0.82, 1.00)

0.95(0.74, 1.00)

0.88(0.75, 0.96)

PPV

0.83(0.36, 1.00)

0.83(0.36, 1.00)

0.86(0.42, 1.00)

0.71(0.29, 0.96)

0.98(0.95, 1.00)

0.71(0.29, 0.96)

0.67(0.35, 0.90)

0.78(0.40, 0.97)

1.00(0.48, 1.00)

0.83(0.36, 1.00)

0.97(0.93, 0.99)

NPV

0.82(0.60, 0.95)

0.82(0.60, 0.95)

0.86(0.64, 0.97)

0.91(0.78, 0.97)

0.85(0.72, 0.94)

0.91(0.78, 0.97)

0.94(0.70, 1.00)

0.95(0.83, 0.99)

0.83(0.61, 0.95)

0.82(0.60, 0.95)

1.00(0.91, 1.00)

PLR

10.56(1.44, 77.62)

10.56(1.44, 77.62)

12.67(1.78, 90.18)

11.39(2.61, 49.66)

13.73(4.61, 40.91)

11.39(2.61, 49.66)

4.22(1.72, 10.39)

15.94(3.95, 64.40)

Inf(NaN, Inf)

10.56(1.44, 77.62)

8.60(3.77, 19.60)

NLR

0.47(0.22, 0.98)

0.47(0.22, 0.98)

0.35(0.14, 0.89)

0.47(0.22, 0.97)

0.05(0.02, 0.09)

0.47(0.22, 0.97)

0.14(0.02, 0.91)

0.23(0.07, 0.79)

0.44(0.21, 0.92)

0.47(0.22, 0.98)

0.00(0.00, NaN)

  1. All constructed predictive models were developed without the utilization of data augmentation techniques.
  2. SVM supported vector machine, NN neural network, MLP multi-layer perceptron, GP gaussian process, GBM gradient boosting machine, LR logistic regression, NB Naive Bayes, XGB XGBoost, C5.0 C5.0 Decision Trees, KNN k-nearest neighbor, RF random forest, PPV positive predictive value, NPV negative predictive value, PLR positive likelihood ratio, NLR negative likelihood ratio.