Table 3 Performance of the machine-learning models for early prediction of dialysis liberation.
Models | Sensitivity | Specificity | Brier Score | Accuracy | AUROC | |
|---|---|---|---|---|---|---|
2015–5019 Development and fivefold cross-validation | XGBoost | 0.48 ± 0.04 | 0.91 ± 0.04 | 0.22 ± 0.05 | 0.78 ± 0.05 | 0.81 ± 0.03 |
RF | 0.38 ± 0.02 | 0.95 ± 0.02 | 0.21 ± 0.03 | 0.79 ± 0.03 | 0.80 ± 0.02 | |
LR | 0.43 ± 0.04 | 0.89 ± 0.04 | 0.24 ± 0.05 | 0.76 ± 0.05 | 0.77 ± 0.01 | |
2020 Temporal testing | XGBoost | 0.57 | 0.93 | 0.16 | 0.84 | 0.85 (0.81–0.88) |
RF | 0.44 | 0.94 | 0.18 | 0.82 | 0.83 (0.80–0.87) | |
LR | 0.44 | 0.91 | 0.21 | 0.79 | 0.82 (0.79–0.85) |