Table 1 Comparative performance metrics of machine learning algorithms for predictive modelling.
From: Artificial intelligence-driven assessment of salt caverns for underground hydrogen storage in Poland
Criteria | |||||
|---|---|---|---|---|---|
MAE | MSE | RMSE | MAPE | ||
ML Algorithms | Catboost | 0.1994 | 0.0816 | 0.2833 | 0.0163 |
Lgbm | 0.2102 | 0.0866 | 0.2920 | 0.0172 | |
XGboost | 0.2152 | 0.0911 | 0.2996 | 0.0176 | |
Gbr | 0.2285 | 0.0995 | 0.3124 | 0.0187 | |
Knn | 0.2333 | 0.1088 | 0.3274 | 0.0191 | |
Lr | 0.2461 | 0.1159 | 0.3372 | 0.0202 | |
Svr | 0.2065 | 0.0905 | 0.2982 | 0.0169 | |
MLP | 0.2322 | 0.1032 | 0.3186 | 0.0190 | |