Table 2 ASD-SWNet configurations.

From: ASD-SWNet: a novel shared-weight feature extraction and classification network for autism spectrum disorder diagnosis

Parameter name

Parameters

Cross-validation fold

10

RFE

2000

K-nearest neighbor

5

Augmentation factor

2

DAE optimizer

Stochastic gradient descent (SGD)

SGD momentum

0.9

Learning rate

0.0001

Gaussian noise

0.1

Epoch

200

Dropout rate

0.3

Early stopping

20

CNN optimizer

Adaptive optimizer (Adam)