Table 3 Description of unimodal benchmark functions.
ID | Formula | Range |
|---|---|---|
F1 | \(f(x) = \sum\nolimits_{i = 1}^{n} {x_{i}^{2} }\) | [100, 100] |
F2 | \(f(x) = \sum\nolimits_{i = 1}^{n} {\left| {x_{i} } \right|} + \prod\nolimits_{i = 1}^{n} {\left| {x_{i} } \right|}\) | [10, 10] |
F3 | \(f(x) = \sum\nolimits_{i = 1}^{n} {\left( {\sum\nolimits_{j - 1}^{i} {x_{j} } } \right)^{2} }\) | [100, 100] |
F4 | \(f(x) = \max_{i} \left\{ {\left| {x_{i} } \right|,\,1 \le i \le n} \right\}\) | [100, 100] |
F5 | \(f(x) = \sum\nolimits_{i = 1}^{n - 1} {\left[ {100\left( {x_{i + 1} - x_{i}^{2} } \right)^{2} + (x_{i} - 1)^{2} } \right]}\) | [30, 30] |
F6 | \(f(x) = \sum\nolimits_{i = 1}^{n} {\left( {\left[ {x_{i} + 0.5} \right]} \right)^{2} }\) | [100, 100] |
F7 | \(f(x) = \sum\nolimits_{i = 1}^{n} {ix_{i}^{4} + random(0,1)}\) | [1.28, 1.28] |