Table 1 Classification metrics on test data. The standard deviation was computed based on a sample size of N = 10.

From: Case study on climate change effects and food security in Southeast Asia

Model

Classification threshold

Balanced accuracy

Precision

Recall

ROC-AUC

Cropland suitability via climate conditions

Logistic Regression44

0.15

0.750

0.296

0.610

0.871

Random Forest Classifier45

0.24

0.699

0.657

0.415

0.914

Naive Bayes46

0.98

0.733

0.376

0.534

0.891

MLP Classifier47

0.24

0.797

0.455

0.651

0.909

AdaBoost Classifier48

0.32

0.770

0.437

0.598

0.714

CatBoost Classifier49

0.32

0.802

0.660

0.624

0.959

XGBClassifier42

0.34

0.813

0.651

0.653

0.960

Convolutional Neural Network50

0.31

0.792

0.669

0.501

0.822

Cropland suitability via climate and socioeconomic conditions

XGBClassifier

\(0.49 \pm 1.8{\times }10^{-2}\)

\(0.959 \pm 1.3{\times }10^{-6}\)

\(0.939 \pm 3.2{\times }10^{-6}\)

\(0.924 \pm 2.8{\times }10^{-6}\)

\(0.992 \pm 5.3{\times }10^{-5}\)

  1. Bold values represent the highest metrics.