Table 2 IoU and fairness scores for hip segmentation across different protected attributes, including race, sex, and age.

From: Fair AI-powered orthopedic image segmentation: addressing bias and promoting equitable healthcare

U-Net backbone

Model

White/Caucasian

Black/AA*

SER

SD

(a) Racial group IoU scores & fairness scores

ResNet18

Baseline

0.876

0.867

1.070

0.004

Balanced

0.857

0.853

1.027

0.002

Stratified

0.864

0.857

1.054

0.004

Group

0.854

0.851

1.019

0.001

EfficientNet-B0

Baseline

0.869

0.862

1.051

0.003

Balanced

0.842

0.844

1.013

0.001

Stratified

0.876

0.868

1.064

0.004

Group

0.861

0.851

1.076

0.005

U-Net Backbone

Model

Male

Female

SER

SD

(b) Sex group IoU & fairness scores

ResNet18

Baseline

0.874

0.871

1.023

0.001

Balanced

0.855

0.854

1.010

0.001

Stratified

0.873

0.867

1.047

0.003

Group

0.851

0.848

1.020

0.001

EfficientNet-B0

Baseline

0.869

0.864

1.033

0.002

Balanced

0.851

0.828

1.155

0.012

Stratified

0.870

0.864

1.046

0.003

Group

0.843

0.858

1.101

0.007

(c) Age group IoU & fairness scores

U-Net Backbone

Model

Age 50 or Lower

Age 51–64

Age 65–79

SER

SD

ResNet18

Baseline

0.868

0.874

0.871

1.044

0.002

Balanced

0.855

0.833

0.834

1.147

0.010

Stratified

0.867

0.868

0.862

1.050

0.003

Group

0.768

0.852

0.852

1.574

0.040

EfficientNet-B0

Baseline

0.866

0.868

0.864

1.025

0.001

Balanced

0.833

0.817

0.814

1.115

0.008

Stratified

0.869

0.872

0.868

1.033

0.002

Group

0.743

0.862

0.843

1.854

0.052

  1. *AA: African American.