Table 6 Parameter selection of the employed classifiers.

From: Metaheuristic integrated machine learning classification of colon cancer using STFT LASSO and EHO feature extraction from microarray gene expressions

Classifiers

Parameters

GMM

\(\text{Coefficient of mixture}-{M}_{cg}\), Mean vector-\({\Upsilon}_{cg}, { \text{C}\cdot }_{cg}\)-Covariance matrix are initialized to zero. Test point likelihood probability = 0.1, Cluster probability = 0.5, Convergence rate = 0.6, Convergence Criteria = MSE of 10–7

PSO-GMM

Population Size, N = 200, Inertia Weight (\(w\)) = 0.7, Constriction coefficients: c1 = 1.5 and c2 = 1.5, Random numbers: r1 and r2  [0, 1], Maximum Number of Iterations = 1000 or Convergence Criteria = MSE of 10–7

DFA

Window Scale (n) = 1.6, Polynomial Order = 1, Normalization Factor (N) = 1.6, Degree of window overlap = 50%, Convergence Criteria = MSE of 10–7

NBC

Smoothing factor, α = 0.06, Prior probabilities = 0.15, Distribution Assumption = Gaussian Naive Bayes, Convergence Criteria = MSE of 10–7

Firefly-GMM

Population Size, N = 200, Initial attractiveness \({I}_{0}\) = 1, Randomization Parameter (α) = 0.1, Attraction coefficient β = 0.6, Light absorption coefficient γ = 0.1, Distance between two fireflies r = Eucledian, Maximum Number of Iterations = 1000 or Convergence Criteria = MSE of 10–7

SVM (RBF)

Kernel width parameter (σ) = 0.1, Regularization Parameter (C) = 1, Class Weights (w) = 0.86, Bias, b = 0.01, Convergence Criteria = MSE of 10–7

FPO-GMM

Population Size, N = 200, Step Size (\(\delta \)) = 0.15, Pollination Rate (λ) = 1.5, Random walk step \(\varepsilon\) [0, 1] (Uniform distribution), Switch Probability (ρ) = 0.65, Maximum Number of Iterations = 1000 or Convergence Criteria = MSE of 10–7