Table 3 Table showing deep learning based fusion techniques and the training datasets used.

From: Enhanced low-light image fusion through multi-stage processing with Bayesian analysis and quadratic contrast function

Technique

Training datasets

 

DenseFuse

Microsoft Common Objects in Context (MS-COCO)10

79,000 inputs

1000 validation images

FusionGAN

TNO5

64,381 pairs

IFCNN

Online generated from ImageNet dataset,

NYU-D2 dataset12

Nearly 100,000 image pairs

PIAFusion

Multi-Spectral Road Scenarios (MSRS)9,

MFNet dataset8

Full MSRS dataset

PMGI

TNO5,

HarvardMed2

124 image pairs,

407,696 patch pairs

RFN-Nest

Microsoft Common Objects in Context (MS-COCO)10,

Korea Advanced Institute of Science and Technology (KAIST)11

Nearly 80,000 images

SDNet

TNO5,

HarvardMed2

Nearly, 370,839 patch pairs

SeAFusion

MFNet8

Whole MFNet dataset with patches

U2Fusion

RoadScene1, Harvard2, Lytro4, TNO5, EMPAHDR6, FLIR7

All imaged in the datasets

DLIEP

MS-COCO10

82,612 images (MS-COCO)

PPTFusion

MS-COCO10

82,612 images (MS-COCO)

  1. 1. https://github.com/hanna-xu/RoadScene.
  2. 2. http://www.med.harvard.edu/AANLIB/home.html.
  3. 3. https://github.com/csjcai/SICE.
  4. 4. https://mansournejati.ece.iut.ac.ir/content/ lytro-multi-focus-dataset.
  5. 5. https://figshare.com/articles/TNOImageFusionDataset/1008029.
  6. 6. http://www.empamedia.ethz.ch/hdrdatabase/index.php.
  7. 7. https://www.flir.com/oem/adas/adas-dataset-form/
  8. 8. https://www.mi.t.u-tokyo.ac.jp/static/projects/mil_multispectral/
  9. 9. https://github.com/Linfeng-Tang/MSRS.
  10. 10. http://mscoco.org/
  11. 11. http://rcv.kaist.ac.kr/multispectral-pedestrian/
  12. 12. https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html.