Table 1 Typical energy storage technologies and their characteristics.
Energy storage technology | Lifetime/year·time−1 | Cost/¥·kW h−1 | Efficiency/% | Power supply | Peak shaving | Unit commissioning | Power quality |
|---|---|---|---|---|---|---|---|
Pumped | 30–50 | 3600–11,000 | 65–75 | √ | √ | √ |  |
Compressed air | 40 | 700–2500 | 71 | √ | √ | √ |  |
Lead-acid battery | 5–15 | 1100–10,000 | 75–90 | √ | √ |  |  |
Nickel cadmium battery |  > 3500 | 1100–10,000 | 90 | √ | √ |  | √ |
Sodium sulfur battery | 2000 | 3300 | 85 | √ | √ |  | √ |
Lithium ion batteries | 3500–5000 | 1100–10,000 | 85 | √ | √ |  | √ |
All vanadium flow battery | 15–20 | 1100–10,000 | 75–85 | √ | √ |  | √ |
Zinc bromine flow battery | 20 | 1100–3600 | 75–85 | √ | √ |  | √ |
Polysulfide bromine flow battery |  > 15 | 1 100–10,000 | 75 | √ | √ |  | √ |
Hydrogen based energy storage system |  > 20 | 5 800–9000 | 42 | √ | √ | √ |  |
Flywheel energy storage system |  > 20,000 | 2800–18,000 | 90 | √ |  |  | √ |
Superconductive energy storage |  > 50,000 | High | 90 | √ |  |  | √ |
Supercapacitor |  > 10,000 | 1800–2500 | 75–85 |  |  |  | √ |