Table 1 Performance comparison results on energy datasets (in terms of MSE and MAE).

From: Effective weight optimization strategy for precise deep learning forecasting models using EvoLearn approach

Model_Name/performance metric

Energy dataset - Haryana (\(E_{DT1}\))

Energy dataset - Punjab (\(E_{DT2}\))

MSE_Validation \((*\ 10^{-3})\)

MSE_Test \(( *\ 10^{-3})\)

MAE_Test \((*\ 10^{-2})\)

MSE_Validation \((*\ 10^{-3})\)

MSE_Test \(( *\ 10^{-3})\)

MAE_Test \((*\ 10^{-2})\)

MLP

5.926

9.047

7.148

4.817

7.327

5.672

EvoLearn + MLP

5.835

8.525

6.890

4.385

6.134

5.421

DNN4

6.159

9.239

7.302

5.915

8.552

6.194

EvoLearn + DNN4

5.618

7.876

6.666

4.516

7.090

5.678

DNN7

5.352

7.716

6.569

4.052

5.618

5.223

EvoLearn + DNN7

5.192

6.653

6.120

3.824

5.230

4.757

CNN

9.219

11.308

8.763

8.921

12.088

7.478

EvoLearn + CNN

9.099

11.129

8.146

8.323

11.625

7.053

RNN

5.459

8.070

6.834

4.033

6.130

5.231

EvoLearn + RNN

5.180

7.152

6.445

3.871

5.687

5.030

GRU

4.976

4.982

5.201

3.552

4.278

4.506

EvoLearn + GRU

5.005

4.917

5.184

3.549

4.046

4.307

  1. Significant values are in bold.