Table 2 Performance comparison results on air pollution datasets (in terms of MSE and MAE).

From: Effective weight optimization strategy for precise deep learning forecasting models using EvoLearn approach

Model_Name/performance metric

Air pollution dataset- Delhi (\(AP_{DT2}\))

Air pollution dataset - Punjab (\(AP_{DT1}\))

MSE_Validation \((*\ 10^{-3})\)

MSE_Test \(( *\ 10^{-3})\)

MAE_Test \((*\ 10^{-2})\)

MSE_Validation \((*\ 10^{-3})\)

MSE_Test \(( *\ 10^{-3})\)

MAE_Test \((*\ 10^{-2})\)

MLP

2.400

6.556

5.816

2.184

5.457

5.273

EvoLearn + MLP

2.223

4.690

4.687

2.077

5.292

5.020

DNN4

4.730

8.989

7.095

2.711

6.791

5.830

EvoLearn + DNN4

2.073

6.124

5.560

1.891

4.934

4.649

DNN7

1.786

9.307

6.044

1.772

5.843

5.208

EvoLearn + DNN7

1.799

6.636

5.408

1.715

5.344

4.569

CNN

2.342

8.737

6.539

2.808

7.404

5.725

EvoLearn + CNN

2.215

8.199

6.189

2.517

7.160

5.255

RNN

2.314

5.878

5.388

1.742

4.768

4.748

EvoLearn + RNN

2.067

4.799

4.494

1.762

3.946

3.730

GRU

1.948

4.949

4.684

1.494

3.952

3.768

EvoLearn + GRU

1.849

4.632

4.526

1.476

3.874

3.685

  1. Significant values are in bold.