Table 3 Parameter optimization on the training dataset using fivefold cross-validation.

From: Prediction of concrete compressive strength using a Deepforest-based model

Regressor

Parameter range

Optimized parameters

Linear

–

–

KNeighbors

n_neighbors:[0, 100]

4

DecisionTree

max_depth:[0, 100]

36

SVR

C:[0, 10], gamma:[0, 10]

C:9.8, gamma:0.3

LASSO

alpha:np.logspace(− 4, 0, 50)

0.13

MLP

hidden_layer_sizes:(10,10) ~ (100,100)

(50, 50)

ExtraTrees

n_estimators:[200, 400]

330

RandomForest

n_estimators:[200, 400]

200

AdaBoost

n_estimators:[200, 400]

240

GradientBoosting

n_estimators:[200, 400]

100

Bagging

n_estimators:[200, 400]

290

Deepforest

layers:[1, \(+\infty\)]

2