Table 1 The summary of the results of the introduced framework.
From: Computer vision and statistical insights into cycling near miss dynamics
Models | Factors | APa | Statistical weightb | Norm. weightc |
|---|---|---|---|---|
Model1-NightNet | Nightime | 0.885 | 0.268 | 0.101 |
Daytime | 0.885 | 0.120 | 0.045 | |
Dawn_dusk | 0.885 | 0.417 | 0.157 | |
Model2-GlareNet | Glare | 0.883 | 0.099 | 0.037 |
Model3-PrecipitationNet(b) | Clear | 0.959 | 0.117 | 0.044 |
Rain | 0.959 | 0.281 | 0.106 | |
Snow | 0.959 | 0.199 | 0.075 | |
Model4-FogNet | Fog | 0.862 | 0.241 | 0.091 |
Model5-SlipNet | Wet surface | 0.918 | 0.241 | 0.091 |
Model6-Object_detection | Person | 0.75 | 0.074 | 0.028 |
Bicycle | 0.79 | 0.201 | 0.076 | |
Car | 0.81 | 0.089 | 0.034 | |
Bus | 0.77 | 0.100 | 0.038 | |
Motorbike | 0.81 | 0.368 | 0.139 | |
Truck | 0.77 | 0.034 | 0.013 | |
Model7-Cyclinglane | Cyclinglane | 0.91 | 0.1235 | 0.047 |