Table 3 Optimal parameters used for the machine learning models.
Classifier | Parameter | Value |
|---|---|---|
XGBoost | n_estimators | 200 |
Learning rate | 0.01 | |
Max depth | 20 | |
Min child weight | 10 | |
gamma | 0.5 | |
Booster | Gbtree | |
Objective Function | Binary logistics | |
Col sample by level | 0.5, 0.8, 1.0 | |
lambda (reg_alpha) | 0.1, 1 | |
alpha (reg_lambda) | 0.1, 1 | |
Random state | 42 | |
n_estimators | 200 | |
RF | n_estimators | 200 |
Bootstrap | True | |
Random state | 42 | |
Criterion | Entropy | |
Max_features | Auto | |
Max_depth | 20 | |
min_samples_split | 9 | |
min_samples_leaf | 5 | |
SVM | Gamma | 0.001 |
Kernal | RBF | |
C | 15 | |
Random state | 42 | |
KNN | Nearest neighbors | 11 |
Random state | 42 |