Table 4 Model performance evaluation.
Feature set | Model name | AUC | Accuracy | Recall | Precision | F1 |
|---|---|---|---|---|---|---|
Radiologic features | Ada boost classifier | 0.8517 | 0.7308 | 0.8421 | 0.5926 | 0.6957 |
Logistic regression | 0.8469 | 0.7885 | 0.6842 | 0.7222 | 0.7027 | |
Random forest | 0.8293 | 0.75 | 0.4737 | 0.75 | 0.5806 | |
SVM (Radial kernel) | 0.8158 | 0.7692 | 0.4737 | 0.8182 | 0.6 | |
XGBoost | 0.7885 | 0.8293 | 0.6316 | 0.75 | 0.6857 | |
KNN | 0.7584 | 0.7115 | 0.4211 | 0.6667 | 0.5161 | |
Light gradient boosting | 0.7257 | 0.6346 | 0.3158 | 0.5 | 0.3871 | |
Naive bayes | 0.7177 | 0.7115 | 0.4737 | 0.6429 | 0.5455 | |
Clinical features | Ada boost classifier | 0.8222 | 0.7115 | 0.5263 | 0.625 | 0.5714 |
Logistic regression | 0.7624 | 0.7115 | 0.5263 | 0.625 | 0.5714 | |
Random forest | 0.7998 | 0.6923 | 0.5263 | 0.5882 | 0.5556 | |
SVM (Radial kernel) | 0.7472 | 0.6923 | 0.4737 | 0.6 | 0.5294 | |
XGBoost | 0.8132 | 0.75 | 0.7368 | 0.6364 | 0.6829 | |
KNN | 0.8057 | 0.7115 | 0.5789 | 0.6111 | 0.5946 | |
Light gradient boosting | 0.7616 | 0.6731 | 0.5263 | 0.5556 | 0.5405 | |
Naive bayes | 0.7352 | 0.6731 | 0.6842 | 0.5417 | 0.6047 | |
Combination features | Ada boost classifier | 0.8947 | 0.8077 | 0.7368 | 0.7368 | 0.7368 |
Logistic regression | 0.8628 | 0.8462 | 0.6842 | 0.8667 | 0.7647 | |
Random forest | 0.8844 | 0.8462 | 0.5789 | 0.9421 | 0.7333 | |
SVM (Radial kernel) | 0.8612 | 0.7885 | 0.6316 | 0.75 | 0.6857 | |
XGBoost | 0.8628 | 0.8077 | 0.6316 | 0.8 | 0.7059 | |
KNN | 0.8158 | 0.7692 | 0.6316 | 0.7059 | 0.6667 | |
Light gradient boosting | 0.823 | 0.6923 | 0.5789 | 0.5789 | 0.5789 | |
Naive bayes | 0.8086 | 0.75 | 0.7895 | 0.625 | 0.6977 |