Table 4 Model performance evaluation.

From: Identifying severe community-acquired pneumonia using radiomics and clinical data: a machine learning approach

Feature set

Model name

AUC

Accuracy

Recall

Precision

F1

Radiologic features

Ada boost classifier

0.8517

0.7308

0.8421

0.5926

0.6957

Logistic regression

0.8469

0.7885

0.6842

0.7222

0.7027

Random forest

0.8293

0.75

0.4737

0.75

0.5806

SVM (Radial kernel)

0.8158

0.7692

0.4737

0.8182

0.6

XGBoost

0.7885

0.8293

0.6316

0.75

0.6857

KNN

0.7584

0.7115

0.4211

0.6667

0.5161

Light gradient boosting

0.7257

0.6346

0.3158

0.5

0.3871

Naive bayes

0.7177

0.7115

0.4737

0.6429

0.5455

Clinical features

Ada boost classifier

0.8222

0.7115

0.5263

0.625

0.5714

Logistic regression

0.7624

0.7115

0.5263

0.625

0.5714

Random forest

0.7998

0.6923

0.5263

0.5882

0.5556

SVM (Radial kernel)

0.7472

0.6923

0.4737

0.6

0.5294

XGBoost

0.8132

0.75

0.7368

0.6364

0.6829

KNN

0.8057

0.7115

0.5789

0.6111

0.5946

Light gradient boosting

0.7616

0.6731

0.5263

0.5556

0.5405

Naive bayes

0.7352

0.6731

0.6842

0.5417

0.6047

Combination features

Ada boost classifier

0.8947

0.8077

0.7368

0.7368

0.7368

Logistic regression

0.8628

0.8462

0.6842

0.8667

0.7647

Random forest

0.8844

0.8462

0.5789

0.9421

0.7333

SVM (Radial kernel)

0.8612

0.7885

0.6316

0.75

0.6857

XGBoost

0.8628

0.8077

0.6316

0.8

0.7059

KNN

0.8158

0.7692

0.6316

0.7059

0.6667

Light gradient boosting

0.823

0.6923

0.5789

0.5789

0.5789

Naive bayes

0.8086

0.75

0.7895

0.625

0.6977

  1. The bolded data is the optimal value of each evaluation index.