Table 3 Polynomial coefficients for deformation constants.

From: Empirical modelling of 2205 DSS flow curves using strain-compensated Arrhenius rate-type constitutive model

α (MPa−1)

n

Q (kJ/mol)

Ln A (s−1)

\({a}_{0}\)=0.00898

\({b}_{0}\)=9.0759

\({c}_{0}\)=642.3240

\({d}_{0}\)=59.7755

\({a}_{1}\)=− 0.04165

\({b}_{1}\)=− 73.587

\({c}_{1}\)=2854.2880

\({d}_{1}\)=263.9606

\({a}_{2}\)=0.52209

\({b}_{2}\)=582.606

\({c}_{2}\)=31,664.730

\({d}_{2}\)=2815.382

\({a}_{3}\)=3.24731

\({b}_{3}=3069.92\)

\({c}_{3}\)=− 228,027.0

\({d}_{3}\)=20,220.60

\({a}_{4}\)=11.97341

\({b}_{4}\)=10,531.86

\({c}_{4}\)=971,966.20

\({d}_{4}\)=86,614.54

\({a}_{5}\)=− 26.8080

\({b}_{5}\)=22,906.90

\({c}_{5}= 2429877\)

\({d}_{5}\)=− 217,433

\({a}_{6}\)=35.71193

\({b}_{6}\)=3,205.34

\({c}_{6}\)=3,490,705.0

\({d}_{6}\)=313,066.3

\({a}_{7}\)=26.0715

\({b}_{7}\)=21,906.00

\({c}_{7}\)=2,665,075.0

\({d}_{7}\)=− 239,178

\({a}_{8}\)= 8.04215

\({b}_{8}\)= 6682.64

\({c}_{8}\)=837,605.50

\({d}_{8}\)=75,130.89