Table 4 Zero-shot learning evaluation metrics for equispaced Cartesian under-sampling, 1D Gaussian under-sampling, and 2D Gaussian under-sampling reconstructions.

From: Learning to reconstruct accelerated MRI through K-space cold diffusion without noise

 

4x

8x

4x with 8-fold model

PSNR

SSIM

PSNR

SSIM

PSNR

SSIM

Equispaced Cartesian Under-sampling

 U-Net

28.56

0.6201

27.07

0.5406

27.53

0.6067

 W-Net

29.63

0.6730

28.34

0.6109

28.56

0.6591

 E2E-VarNet

30.25

0.6821

29.10

0.6210

29.53

0.6583

 K-space cold diffusion

30.54

0.7139

29.56

0.6440

30.50

0.7138

1D Gaussian Under-sampling

 U-Net

28.70

0.6311

27.21

0.5579

27.53

0.6258

 W-Net

29.61

0.6780

28.50

0.6253

28.32

0.6778

 E2E-VarNet

30.19

0.6879

29.37

0.6309

29.47

0.6617

 K-space cold diffusion

30.34

0.7090

29.46

0.6464

30.17

0.7061

2D Gaussian Under-sampling

 U-Net

27.90

0.6019

26.03

0.5193

26.28

0.5951

 W-Net

28.97

0.6671

27.49

0.5989

27.45

0.6653

 E2E-VarNet

28.30

0.6226

21.83

0.4067

20.82

0.4286

 K-space cold diffusion

30.04

0.6992

29.31

0.6341

30.04

0.6999