Table 11 Comparison between the proposed models and the state-of-the-art DL for flower detection.

From: Deep learning based approach for actinidia flower detection and gender assessment

Application

DL models

Results

Article

Precision (%)

Recall (%)

F1 score (%)

AP (%)

mAP (%)

Flower

Flower

Flower

Flower and stamen detection

Modified YOLOv5s

96.7

89.1

90.1

16

Faster R-CNN + ResNet50

57.4

98.9

92.6

Faster R-CNN + VGG

68.5

98.9

92.6

SDD + VGG

76.6

87.4

82.3

SDD MobileNetv2

86.7

70.2

81.1

Flower and bud detection

YOLOv4

92.47

91.49

17

YOLOV3

85.73

80.98

Flower detection

Faster R-CNN NAS

96.8

68.0

79.0

19

Faster R-CNN Inception v2

90.4

75.8

82.0

SDD Inception v2

78.5

61.2

68.1

Flower detection

Faster R-CNN Inception v2

91

80

85

20

Flower and bud detection

YOLOv5l

93.12

93.23

21

Flower and gender detection

YOLOv5

95

94

94

86

Proposed

YOLOv8

96

93

94

85

DETR

89

97

93

94

RT-DETR

95

96

95

89