Table 1 Transfer function of unified virtual impedance model with active damping method.
AD | \({G}_{\text{f}\text{b}}\text{ }\text{or }{G}_{\text{f}\text{f}}\) | The transfer function of AD | The transfer function of PD |
|---|---|---|---|
ICFB | \({H}_{1}\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}\left(1+{L}_{T}C{s}^{2}\right)+\left({L}_{1}+{L}_{T}\right)s}\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{R}_{d}\left(1+{L}_{T}C{s}^{2}\right)+\left({L}_{1}+{L}_{T}\right)s}\) |
CCFB | \({H}_{1}\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}C{s}^{2}+\left({L}_{1}+{L}_{T}\right)s}\) | \(\frac{1}{{L}_{1}{L}_{T}C+\frac{{L}_{1}{L}_{T}}{{R}_{d}}{s}^{2}+\left({L}_{1}+{L}_{T}\right)s}\) |
CVFB | \({H}_{1}s\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}s+\left({L}_{1}+{L}_{T}\right)s}\) | |
GCFB | \({H}_{1}{s}^{2}\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}+\left({L}_{1}+{L}_{T}\right)s}\) | |
CVFF | \({K}_{\text{f}\text{f}}/{K}_{\text{P}\text{W}\text{M}}\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}-{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}s+\left({L}_{1}+{L}_{T}\right)s}\) | |
PVFF | \({K}_{\text{f}\text{f}}/{K}_{\text{P}\text{W}\text{M}}\) | \(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}-{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{g}s+\left({L}_{1}+{L}_{T}\right)s}\) |