Table 1 Transfer function of unified virtual impedance model with active damping method.

From: An active damping control strategy for suppressing LCL resonant point migration for three-phase grid-tied inverter

AD

\({G}_{\text{f}\text{b}}\text{ }\text{or }{G}_{\text{f}\text{f}}\)

The transfer function of AD

The transfer function of PD

ICFB

\({H}_{1}\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}\left(1+{L}_{T}C{s}^{2}\right)+\left({L}_{1}+{L}_{T}\right)s}\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{R}_{d}\left(1+{L}_{T}C{s}^{2}\right)+\left({L}_{1}+{L}_{T}\right)s}\)

CCFB

\({H}_{1}\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}C{s}^{2}+\left({L}_{1}+{L}_{T}\right)s}\)

\(\frac{1}{{L}_{1}{L}_{T}C+\frac{{L}_{1}{L}_{T}}{{R}_{d}}{s}^{2}+\left({L}_{1}+{L}_{T}\right)s}\)

CVFB

\({H}_{1}s\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}s+\left({L}_{1}+{L}_{T}\right)s}\)

GCFB

\({H}_{1}{s}^{2}\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}+{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}+\left({L}_{1}+{L}_{T}\right)s}\)

CVFF

\({K}_{\text{f}\text{f}}/{K}_{\text{P}\text{W}\text{M}}\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}-{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{T}s+\left({L}_{1}+{L}_{T}\right)s}\)

PVFF

\({K}_{\text{f}\text{f}}/{K}_{\text{P}\text{W}\text{M}}\)

\(\frac{1}{{L}_{1}{L}_{T}C{s}^{3}-{K}_{\text{P}\text{W}\text{M}}{G}_{d}{G}_{\text{f}\text{b}}{L}_{g}s+\left({L}_{1}+{L}_{T}\right)s}\)