Table 6 Class-wise quantitative results specific to traffic types on UNSW-NB15.

From: A novel multi-scale network intrusion detection model with transformer

 

Accuracy

Recall

Potluri et al. 56

Hooshmand et al. 55

DNN 58

Ours

DRaNN 57

Ashiku et al. 59

DNN 58

Ours

Analysis

0.0

99.0

99.5

98.7

98.2

89.5

0.0

98.5

Backdoor

0.0

12.0

95.1

99.1

98.8

91.2

34.4

98.1

Dos

0.0

10.5

99.4

98.4

98.8

94.6

97.7

99.0

Exploits

61.8

30.0

89.9

97.2

98.8

94.2

1.3

99.4

Fuzzers

6.8

69.5

99.9

97.4

97.1

88.6

0.0

99.0

Generic

97.7

69.1

78.3

98.6

99.8

95.1

57.1

99.2

Normal

99.7

99.0

78.9

99.9

-

97.2

92.8

99.7

Reconnaisance

0.0

77.2

92.7

97.0

99.2

95.1

1.8

99.7

Shell code

0.0

85.0

99.0

97.5

97.8

91.6

0.0

99.0

Worms

0.0

76.9

98.8

98.6

98.1

89.8

0.0

99.4

  1. The values are expressed in %, and the best one is in bold.