Table 4 Classification accuracy of LOPs for cylindrical and lamellar structures on \(f=0.33\).

From: Distinguish microphase-separated structures of diblock copolymers using local order parameters

\(r_c\)

LOPs

\([\sigma _\text{u}]\)

      

c\([-]\)

       

3.700

\(\overline{A}_1^{1}\)

\(\overline{B}_{2,1,0}\)

\(\overline{C}\)

\(\overline{D}_{f_2,f_2,f_2}\)

\(\overline{F}_{f_1,f_1,1}\)

\(\overline{I}\)

\(\overline{Q}^\text{S}_{6}\)

\(\overline{Q}^\text{L}_{8}\)

\(\overline{LQ}_{4}\)

\({LQ}^\text{T}_{4}\)

\(\overline{W}^\text{S}_{4}\)

\(\overline{W}^\text{L}_{4}\)

\(\overline{LW}_{4}\)

\({LW}^\text{T}_{4}\)

0.734

0.660

0.618

0.686

0.648

0.664

0.718

0.678

0.784

0.685

0.648

0.823

0.813

0.831

4.750

\(\overline{A}_2^{2}\)

\(\overline{B}_{2,1,0}\)

\(\overline{C}\)

\(\overline{D}_{f_2,f_2,f_2}\)

\(\overline{F}_{f_1,f_1,1}\)

\(\overline{I}\)

\(\overline{Q}^\text{S}_{8}\)

\(\overline{Q}^\text{L}_{4}\)

\(\overline{LQ}_{4}\)

\(\overline{LQ}^\text{T}_{4}\)

\(\overline{W}^\text{S}_{4}\)

\(\overline{W}^\text{L}_{4}\)

\(\overline{LW}_{4}\)

\(\overline{LW}^\text{T}_{6}\)

0.847

0.733

0.677

0.783

0.719

0.741

0.810

0.735

0.919

0.963

0.741

0.976

0.977

0.971

5.650

\(\overline{A}_4^{2}\)

\(\overline{B}_{2,1,0}\)

\(\overline{C}\)

\(\overline{D}_{f_2,f_2,f_2}\)

\(\overline{F}_{f_1,f_1,1}\)

\(\overline{I}\)

\(\overline{Q}^\text{S}_{8}\)

\(\overline{Q}^\text{L}_{4}\)

\(\overline{LQ}_{6}\)

\(\overline{LQ}^\text{T}_{4}\)

\(\overline{W}^\text{S}_{4}\)

\(\overline{W}^\text{L}_{4}\)

\(\overline{LW}_{6}\)

\(\overline{LW}^\text{T}_{6}\)

0.978

0.802

0.729

0.886

0.797

0.822

0.902

0.962

0.951

1.000

0.831

0.995

0.919

0.998

6.550

\(\overline{A}_2^{2}\)

\(\overline{B}_{2,1,\pi /2}\)

\(\overline{C}\)

\(\overline{D}_{f_2,f_2,f_2}\)

\(\overline{F}_{f_1,f_1,1}\)

\(\overline{I}\)

\(\overline{Q}^\text{S}_{8}\)

\(\overline{Q}^\text{L}_{6}\)

\(\overline{LQ}_{8}\)

\(\overline{LQ}^\text{T}_{4}\)

\(\overline{W}^\text{S}_{4}\)

\(\overline{W}^\text{L}_{6}\)

\(\overline{LW}_{8}\)

\(\overline{LW}^\text{T}_{6}\)

1.000

0.888

0.790

0.987

0.893

0.934

0.975

1.000

0.983

1.000

0.941

1.000

0.977

1.000

  1. The LOP species with the highest correct tagging rate (c) in each LOP series is shown for every neighboring particle selection protocol \(r_\text{c}\).