Table 1 A summary of prior investigations pertaining to the impact of various parameters on the RM within 1R passive crossbar arrays. The considered parameters encompass on/off ratio, nonlinearity (NL), rectification factor (RF), crossbar size, line resistance (\(R_\text {Line}\)), and pull-up resistance (\(R_\text {PU}\)). Note that, RF is corresponding to rectification factor in LRS, \(\text {RF}_\text {n, L}\), in this work. In our work, in additional to the listed parameters, we have further studied \(\text {RF}_\text {n, H}\) = 9.27E−1–9.27E1, as one of the relevant parameters for RM evaluation.
Works | Methods (software) | M classification (M stack) | Relevant parameters for RM evaluation | \(R_\text {Line}\) (\(\Omega\)) | \(R_\text {PU}\) (\(\Omega\)) | Crossbar sizes | ||
|---|---|---|---|---|---|---|---|---|
On/off | NL | RF | ||||||
A. Flocke, 200718 | Analyticalsolution (–) | – (–) | 10\(^1\)–10\(^6\) | – | – | 20 | – | \(1 \times 1\)–\(100 \times 100\) |
A. Flocke, 200819 | Analytical solution (–) | Bipolar (Pt/TiO\(_2\)/Ti/Pt) | 10\(^1\) | 1–10\(^2\) | – | 15 | – | 10 \(\times\) 10–120 \(\times\) 120 |
E. Linn, 201020 | Analytical solution (–) | CRS (Pt/SiO\(_2\)/GeSe/Cu) | 10\(^1\)–10\(^5\) | – | – | – | 10\(^3\)–\(2 \times 10^3\) | \(2 \times 2\)–1E5 \(\times\) 1E5 |
A. Ciprut, 201621 | Analytical solution (SPICE) | – (–) | 10\(^1\)–10\(^4\) | 10\(^1\)–10\(^5\) | – | – | – | \(200 \times 200\) |
A. Chen, 201722 | Analytical solution (HSPICE) | – (–) | 10\(^1\) | 0–10\(^2\) | – | – | 0-\(R_\text {LRS}\) | \(80 \times 80\)–\(320 \times 320\) |
R. Ni, 202123 | Analytical solution (–) | Bipolar (Pt/TaO\(_x\)/Ta) | 10\(^4\) | 0, 10\(^5\) | \(9 \times 10^4\) | – | \(4.7 \times 10^6\) | \(1 \times 1\)–2E4 \(\times\) 2E4 |
K. Zhang, 202224 | Analytical solution (–) | Bipolar (Al/AlN/W) | 6.1 \(\times\) 10\(^3\) | – | 0, \(2.6 \times 10^3\) | – | \(R_\text {LRS}\) | \(1 \times 1\)–3E4 \(\times\) 3E4 |
J. Zhou, 201425 | Memristor model (HSPICE) | Bipolar (-) | 10\(^2\)–10\(^5\) | – | – | 5 | 10\(^1\)–10\(^3\) | \(8 \times 8\)–\(512 \times 512\) |
Y. Gao, 201626 | Memristor model (Cadence) | Bipolar (–) | 10\(^3\) | 0.5–8 | 10\(^3\)–10\(^6\) | 5–320 | \(1.6 \times 10^7\) | \(4 \times 4\)–\(128 \times 128\) |
C. Li, 201927 | Memristor model (SPICE) | Bipolar (p-Si/SiO\(_2\)/n-Si) | 10\(^4\) | – | 10\(^5\) | 0–10\(^3\) | – | \(3 \times 3\)–1E3 \(\times\) 1E3 |
T. Kim, 202128 | Memristor model (SPICE) | Bipolar (Cu/TiO\(_x\)/Al) | – | – | 3.8 \(\times\) 10\(^2\) | – | 10\(^3\)–10\(^7\) | 16 \(\times\) 16–256 \(\times\) 256 |
T. Kim, 202128 | Memristor model (SPICE) | Bipolar (Al/TiO\(_x\)/Al) | – | – | 1.5 | – | 1–10\(^4\) | 16 \(\times\) 16–256 \(\times\) 256 |
Z. Chen, 202229 | Memristor model (Cadence) | Bipolar (Au/BiFeO\(_3\)/Pt/Ti) | 131.5 | 3.5 | 1.22 \(\times\) 10\(^2\)–1.22 \(\times\) 10\(^4\) | 10\(^1\) | 6.5 \(\times\) 10\(^6\) | 4 \(\times\) 4 |
Our work | Memristor model (Cadence) | Bipolar (Au/BiFeO\(_3\)/Pt/Ti) | 24.2–243.7 | 2.0–8.0 | 1.22 \(\times\) 10\(^2\)–1.22 \(\times\) 10\(^4\) | 10\(^1\) | 10\(^5\)–10\(^8\) | 8 \(\times\) 8–128 \(\times\) 128 |