Table 1 A summary of prior investigations pertaining to the impact of various parameters on the RM within 1R passive crossbar arrays. The considered parameters encompass on/off ratio, nonlinearity (NL), rectification factor (RF), crossbar size, line resistance (\(R_\text {Line}\)), and pull-up resistance (\(R_\text {PU}\)). Note that, RF is corresponding to rectification factor in LRS, \(\text {RF}_\text {n, L}\), in this work. In our work, in additional to the listed parameters, we have further studied \(\text {RF}_\text {n, H}\) = 9.27E−1–9.27E1, as one of the relevant parameters for RM evaluation.

From: Assessment of functional performance in self-rectifying passive crossbar arrays utilizing sneak path current

Works

Methods (software)

M classification (M stack)

Relevant parameters for RM evaluation

\(R_\text {Line}\) (\(\Omega\))

\(R_\text {PU}\) (\(\Omega\))

Crossbar sizes

On/off

NL

RF

A. Flocke, 200718

Analyticalsolution (–)

– (–)

10\(^1\)–10\(^6\)

20

\(1 \times 1\)\(100 \times 100\)

A. Flocke, 200819

Analytical solution (–)

Bipolar (Pt/TiO\(_2\)/Ti/Pt)

10\(^1\)

1–10\(^2\)

15

10 \(\times\) 10–120 \(\times\) 120

E. Linn, 201020

Analytical solution (–)

CRS (Pt/SiO\(_2\)/GeSe/Cu)

10\(^1\)–10\(^5\)

10\(^3\)\(2 \times 10^3\)

\(2 \times 2\)–1E5 \(\times\) 1E5

A. Ciprut, 201621

Analytical solution (SPICE)

– (–)

10\(^1\)–10\(^4\)

10\(^1\)–10\(^5\)

\(200 \times 200\)

A. Chen, 201722

Analytical solution (HSPICE)

– (–)

10\(^1\)

0–10\(^2\)

0-\(R_\text {LRS}\)

\(80 \times 80\)\(320 \times 320\)

R. Ni, 202123

Analytical solution (–)

Bipolar (Pt/TaO\(_x\)/Ta)

10\(^4\)

0, 10\(^5\)

\(9 \times 10^4\)

\(4.7 \times 10^6\)

\(1 \times 1\)–2E4 \(\times\) 2E4

K. Zhang, 202224

Analytical solution (–)

Bipolar (Al/AlN/W)

6.1 \(\times\) 10\(^3\)

0, \(2.6 \times 10^3\)

\(R_\text {LRS}\)

\(1 \times 1\)–3E4 \(\times\) 3E4

J. Zhou, 201425

Memristor model (HSPICE)

Bipolar (-)

10\(^2\)–10\(^5\)

5

10\(^1\)–10\(^3\)

\(8 \times 8\)\(512 \times 512\)

Y. Gao, 201626

Memristor model (Cadence)

Bipolar (–)

10\(^3\)

0.5–8

10\(^3\)–10\(^6\)

5–320

\(1.6 \times 10^7\)

\(4 \times 4\)\(128 \times 128\)

C. Li, 201927

Memristor model (SPICE)

Bipolar (p-Si/SiO\(_2\)/n-Si)

10\(^4\)

10\(^5\)

0–10\(^3\)

\(3 \times 3\)–1E3 \(\times\) 1E3

T. Kim, 202128

Memristor model (SPICE)

Bipolar (Cu/TiO\(_x\)/Al)

3.8 \(\times\) 10\(^2\)

10\(^3\)–10\(^7\)

16 \(\times\) 16–256 \(\times\) 256

T. Kim, 202128

Memristor model (SPICE)

Bipolar (Al/TiO\(_x\)/Al)

1.5

1–10\(^4\)

16 \(\times\) 16–256 \(\times\) 256

Z. Chen, 202229

Memristor model (Cadence)

Bipolar (Au/BiFeO\(_3\)/Pt/Ti)

131.5

3.5

1.22 \(\times\) 10\(^2\)–1.22 \(\times\) 10\(^4\)

10\(^1\)

6.5 \(\times\) 10\(^6\)

\(\times\) 4

Our work

Memristor model (Cadence)

Bipolar (Au/BiFeO\(_3\)/Pt/Ti)

24.2–243.7

2.0–8.0

1.22 \(\times\) 10\(^2\)–1.22 \(\times\) 10\(^4\)

10\(^1\)

10\(^5\)–10\(^8\)

\(\times\) 8–128 \(\times\) 128