Table 1 Performance of radiation classifier with varying feature selection methods, feature set size and train/test split.

From: Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung

Feature selection method

Size of feature set

Predictor variable

Classification model

Train/test split

AUC

Accuracy (%)

Confidence intervals

P-value

(* if < 0.05)

Sensitivity

Specificity

Recursive feature elimination

16

Radiation

Random forest

50/50

0.909

94.3

80.8–99.4

* 2.62 × 10−4

0.818

1.00

Feature importance

16

Radiation

Random forest

50/50

0.909

94.3

80.8–99.4

* 2.62 × 10−4

0.818

1.00

Principal components

16

Radiation

Random forest

50/50

0.534

57.1

39.4–72.7

9.46 × 10−1

0.182

0.750

Recursive feature elimination

16

Radiation

Random forest

60/40

0.913

92.9

76.5–99.1

* 5.89 × 10−3

0.875

0.950

Recursive feature elimination

16

Radiation

Random forest

70/30

0.917

95.2

76.2–99.9

* 8.03 × 10−3

0.833

1.00

Recursive feature elimination

16

Radiation

Random forest

80/20

0.955

92.9

66.1–99.8

1.65 × 10−1

1.00

0.909

Recursive feature elimination

13

Radiation

Random forest

50/50

0.770

82.9

66.35–93.44

* 2.09 × 10−2

0.583

0.957

Recursive feature elimination

23

Radiation

Random forest

50/50

0.750

80.0

63.06–91.56

* 1.02 × 10−2

0.500

1.00