Table 2 Performance of EV classifier with varying feature selection methods, feature set size and train/test split.

From: Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung

Feature selection method

Size of feature set

Predictor variable

Classification model

Train/test split

AUC

Accuracy (%)

Confidence intervals

P-value (*if < 0.05)

Sensitivity

Specificity

Recursive feature elimination

14

EV

Random forest

50/50

0.859

85.7

69.7–95.2

* 2.28 × 10−5

0.941

0.778

Feature importance

14

EV

Random forest

50/50

0.832

82.9

66.4–93.4

* 1.13 × 10−3

0.941

0.722

Principal components

14

EV

Random forest

50/50

0.546

54.3

36.7–71.2

4.34 × 10−1

0.647

0.444

Recursive feature elimination

14

EV

Random forest

60/40

0.795

78.6

59.1–91.7

5.7 × 10−2

0.923

0.667

Recursive feature elimination

14

EV

Random forest

70/30

0.727

71.4

47.8–88.7

6.15 × 10−2

1.00

0.455

Recursive feature elimination

14

EV

Random forest

80/20

0.750

71.4

41.9–91.6

2.11 × 10−1

1.00

0.500

Recursive feature elimination

21

EV

Random forest

50/50

0.801

80.0

63.1–91.6

* 1.4 × 10−3

0.812

0.790

Recursive feature elimination

34

EV

Random forest

50/50

63.1

60.0

42.1–76.1

5.73 × 10−1

0.476

0.786