Table 6 Summary of the proposed models in the state-of-the-art tweet sentiment analysis literature.

From: A hybrid transformer and attention based recurrent neural network for robust and interpretable sentiment analysis of tweets

Study

Model used

Dataset

Macro average precision

Macro average recall

Macro average F1-score

Accuracy

Qi & Shabrina (2023)16

BoW+SVC

UK COVID-19 Twitter Dataset

69.66%

70.33%

69.66%

71.00%

Ours

TRABSA

UK COVID-19 Twitter Dataset

94.00%

93.00%

94.00%

94.00%

dos Santos Neto et al., (2024)49

BERT

TripAdvisor

87.70%

88.20%

87.90%

88.20%

Brum & Volpe Nunes (2018)50

BERT

TweetSentBR

73.27%

72.75%

72.96%

72.75%

De Souza et al. (2018)51

MultiFiT-Twitter LM

Twitter NPS

72.43%

72.46%

72.43%

72.46%

Pilar et al. (2023)52

Neighbor-sentiment

InterTASS

57.76%

51.39%

54.39%

61.35%

Su & Kabala (2023)53

GloVe100+LSTM

500k ChatGPT-related Tweets Jan-Mar 2023

81.10%

81.10%

81.10%

81.10%

Memiş et al. (2024)54

Multiclass CNN model with pre-trained word embedding

Turkish Financial Tweets

72.73%

Kp et al. (2024)55

Ensemble classifier

Twitter API Dataset

91.29%

89.65%

87.32%

93.42%

Mohbey et al. (2024)56

CNN-LSTM

Monkeypox Tweets

91.24%

91.24%

91.24%

91.24%

Sazan et al., 2024)57

RoBERTa+fastText

US Airline Dataset

92.08%

92.02%

92.05%

92.02%

Ours

TRABSA

US Airline Dataset

95.00%

95.00%

95.00%

96.00%

Jlifi et al. (2024)58

Ens-RF-BERT

Hashtag Covid19 Tweets

94.03%

93.05%

94.03%

93.01%

Bhardwaj et al. (2024)59

BoW+LR

COV19Tweets Dataset

82.00%

81.80%

81.60%

81.80%

Ours

TRABSA

Global COVID-19 dataset

98.00%

98.00%

98.00%

98.00%