Table 6 Performance evaluation of the proposed FDEIoL using various DL models on MRI images dataset.

From: Advanced federated ensemble internet of learning approach for cloud based medical healthcare monitoring system

Classifiers

Evaluation Parameters

Classes

Overall

Accuracy

Error Rate

Cohen’s Kappa

Average F1Score

Glioma

Meningioma

Pituitary

No Tumor

HIncV3XGBoost

Precision

0.99

0.93

0.99

0.99

0.975

0.025

0.9667

0.975

Recall

0.98

0.99

0.95

0.98

F1-Score

0.98

0.96

0.97

0.99

Specificity

0.99

0.97

1.00

0.99

LT-ViT

Precision

0.97

0.93

0.94

0.99

0.955

0.045

0.9879

0.9575

Recall

0.96

0.92

0.97

0.98

F1-Score

0.96

0.92

0.96

0.99

Specificity

0.99

0.97

0.97

0.99

BM-Net

Precision

1.00

0.98

0.97

0.99

0.9824

0.017

0.9766

0.9825

Recall

0.98

0.96

1.00

0.99

F1-Score

0.99

0.97

0.98

0.99

Specificity

1.00

0.99

1.00

0.99

VGG-SCNet

Precision

0.97

0.97

0.98

0.99

 

0.0226

0.9698

0.9775

Recall

0.99

0.94

0.98

0.99

0.9774

F1-Score

0.98

0.96

0.98

0.99

 

Specificity

0.98

0.99

0.99

0.99

MEEDNets

Precision

0.99

0.99

0.98

0.99

 

0.0101

0.9833

0.9875

Recall

0.99

0.97

1.00

0.99

0.9899

F1-Score

0.99

0.98

0.99

0.99

 

Specificity

0.99

0.99

0.99

0.99

ResGANet

Precision

0.91

0.92

0.96

0.98

0.9425

0.057

0.9235

0.9425

Recall

0.97

0.88

0.98

0.94

F1-Score

0.94

0.90

0.97

0.96

Specificity

0.96

0.97

0.98

0.99

Proposed FDEIoL

Precision

1.00

0.99

0.99

1.00

0.99

0.01

0.97

0.995

Recall

1.00

0.99

1.00

0.99

F1-Score

1.00

0.99

1.00

0.99

Specificity

1.00

0.99

1.00

0.99