Table 3 Summary of error evaluation criteria.

From: Soft-computing models for predicting plastic viscosity and interface yield stress of fresh concrete

No.

Metric

Abbreviation

Formula

Range

Suggested value

1.

Mean absolute error

MAE

\(\:\frac{{\Sigma\:}\:|\text{x}\:-\:\text{y}|}{\text{N}}\)

\(\:0\:\text{t}\text{o}+{\infty\:}\)

Close to zero

2.

Root mean square error

RMSE

\(\:\sqrt{\frac{{\sum\:(\text{x}\:-\:\text{y})}^{2}}{\text{N}}}\)

\(\:0\:\text{t}\text{o}+{\infty\:}\)

Close to zero

3.

Coefficient of determination

\(\:{R}^{2}\)

\(\:1-\frac{\sum\:{\left(x-y\right)}^{2}}{\sum\:{\left(y-{y}_{mean}\right)}^{2}}\)

\(\:0\:\text{t}\text{o}\:1\)

\(\:{R}^{2}>0.8\)

4.

Performance index

PI

\(\:\frac{\text{R}\text{R}\text{M}\text{S}\text{E}}{1+\text{R}}\)

\(\:0\:\text{t}\text{o}+{\infty\:}\)

\(\:\text{P}\text{I}<0.2\)

6.

Objective Function

OF

\(\:\left(\frac{{\text{N}}_{\text{T}\text{r}\text{a}\text{i}\text{n}\text{i}\text{n}\text{g}}-{\text{N}}_{\text{T}\text{e}\text{s}\text{t}\text{i}\text{n}\text{g}}}{\text{N}}\right){\text{P}}_{\text{T}\text{r}\text{a}\text{i}\text{n}\text{i}\text{n}\text{g}}+2\left(\frac{{\text{N}}_{\text{T}\text{e}\text{s}\text{t}\text{i}\text{n}\text{g}}}{\text{N}}\right){\text{P}}_{\text{T}\text{e}\text{s}\text{t}\text{i}\text{n}\text{g}}\)

\(\:0\:\text{t}\text{o}+{\infty\:}\)

\(\:\text{O}\text{F}<0.2\)