Table 3 Deep learning models outperform logistic regression (LR) under the constraint that sensitivity is no less than 90%.
T-size | Multivariable models | |||||
|---|---|---|---|---|---|---|
LR | MLP | Resnet | Transformer | CatBoost | ||
ROC AUC | 0.692 | 0.711 (± 0.002) | 0.712 (± 0.002) | 0.708 (± 0.003) | 0.711 (± 0.004) | 0.704 (± 0.004) |
PR AUC | 0.239 | 0.273 (± 0.001) | 0.263 (± 0.004) | 0.253 (± 0.012) | 0.267 (± 0.010) | 0.258 (± 0.008) |
Sensitivity (recall TPR), % | 90.1 | 90.1 | 90.1 | 90.1 | 90.1 | 90.1 |
Specificity (TNR), % | 31.8 | 32.6 (± 0.5) | 34.2 (± 0.9) | 33.0 (± 0.7) | 34.6 (± 0.6) | 32.8 (± 1.3) |
PPV (precision), % | 15.6 | 15.8 (± 0.1) | 16.1 (± 0.2) | 15.9 (± 0.1) | 16.2 (± 0.1) | 15.8 (± 0.2) |
NPV, % | 95.8 | 95.9 (± 0.1) | 96.1 (± 0.1) | 96.0 (± 0.1) | 96.2 (± 0.1) | 95.9 (± 0.2) |
Accuracy, % | 39.0 | 39.7 (± 0.4) | 41.0 (± 0.8) | 40.0 (± 0.6) | 41.5 (± 0.5) | 39.9 (± 1.1) |