Table 2 Parameters of four base models.

From: Optimizing knee osteoarthritis severity prediction on MRI images using deep stacking ensemble technique

CNN

AlexNet

ResNet34

ResNet50

Input Data (64, 64, 3)

Input Data (64, 64, 3)

Input Data (64, 64, 3)

Input Data (64, 64, 3)

Conv2D_1 (16 filters, 3 × 3, ReLU)

Conv2D: 96 filters, kernel size (11, 11), strides of 4 MaxPool (2,2), strides of 2

ResNet34 (pre-trained)

ResNet50 (pre-trained)

Conv2D_2 (32 filters, 3 × 3, ReLU) MaxPool (2,2)

Conv2D: 256 filters, kernel size (3, 3) MaxPool (2,2), strides of 2

GlobalAveragePooling2D

GlobalAveragePooling2D

Conv2D_2 (64 filters, 3 × 3, ReLU) MaxPool (2,2)

Conv2D: 384 filters, kernel size (3, 3) MaxPool (3,3), strides of 3

Dropout (50%)

Dense (256, ReLU)

Conv2D_2 (128 filters, 3 × 3, ReLU) MaxPool (2,2)

Dense (4096 units, ReLU)

Dense (256, ReLU)

Dense (5, Softmax)

Dropout (25%)

Dropout (50%)

Dropout (50%)

Output (5 classes)

Flatten

Dense (4096 units, ReLU)

Dense (5, Softmax)

Fully Connected Layer (64 units, ReLU)

Dropout (50%)

Output (5 classes)

Dropout (25%)

Dense (5 units, Softmax)

Fully Connected Layer (5 units, Sigmoid)

Output (5 classes)

Output (5 classes)