Table 3 Comparison of the performance of all the classifiers implemented.
Classifier | AUC (Avg ± Std) | Accuracy (Avg ± Std) | Sensitivity | Precision | Specificity | False Omission Rate | Diagnostic Odds Ratio |
|---|---|---|---|---|---|---|---|
K-Nearest Neighbor | 0.898 ± 0.035 | 0.881 ± 0.025 | 0.898 | 0.859 | 0.866 | 0.097 | 56.850 |
Decision Tree | 0.938 ± 0.007 | 0.867 ± 0.011 | 0.868 | 0.855 | 0.866 | 0.122 | 42.512 |
Naïve Bayes | 0.867 ± 0.023 | 0.803 ± 0.022 | 0.796 | 0.790 | 0.810 | 0.184 | 16.634 |
Random Forest | 0.963 ± 0.009 | 0.875 ± 0.018 | 0.883 | 0.883 | 0.893 | 0.107 | 63.140 |
AdaBoost | 0.950 ± 0.007 | 0.865 ± 0.013 | 0.855 | 0.860 | 0.873 | 0.131 | 40.657 |
XGBoost | 0.962 ± 0.012 | 0.901 ± 0.016 | 0.895 | 0.895 | 0.906 | 0.094 | 82.686 |
AdaBoost + XGBoost | 0.968 ± 0.015 | 0.904 ± 0.023 | 0.897 | 0.902 | 0.911 | 0.093 | 89.108 |