Table 5 Classical CNN architectures classification report on augmented CK + dataset.

From: Improved facial emotion recognition model based on a novel deep convolutional structure

DenseNet121

InceptionV3

VGG16

VGG19

Precision

Recall

f1-score

Precision

Recall

f1-score

Precision

Recall

f1-score

Precision

Recall

f1-score

0.76

0.59

0.67

0.71

0.63

0.67

0.69

0.89

0.77

0.90

0.81

0.85

0.88

0.93

0.90

0.96

0.83

0.89

0.88

0.85

0.86

0.78

0.98

0.87

0.67

0.73

0.70

0.54

0.82

0.65

0.85

0.87

0.86

0.79

0.90

0.84

0.79

0.61

0.69

0.66

0.80

0.72

0.82

0.76

0.79

0.89

0.76

0.82

0.73

0.82

0.77

0.95

0.68

0.80

0.89

0.82

0.85

0.94

0.82

0.87

0.56

0.84

0.67

0.80

0.79

0.79

0.83

0.70

0.76

0.85

0.84

0.85

1.00

0.66

0.80

0.98

0.84

0.90

0.88

0.92

0.90

0.93

0.90

0.92

Overall

accuracy

0.74

Overall

accuracy

0.77

Overall

accuracy

0.83

Overall

accuracy

0.86

ResNet50

Xception

EfficientNetB0

 

Precision

Recall

f1-score

Precision

Recall

f1-score

Precision

Recall

f1-score

   

0.68

0.93

0.78

0.82

0.93

0.87

0.91

0.98

0.95

   

0.96

0.92

0.94

0.95

0.95

0.95

0.97

0.98

0.98

   

0.83

0.82

0.82

0.93

0.85

0.89

0.94

0.78

0.85

   

0.85

0.85

0.85

0.91

0.89

0.90

0.82

0.93

0.87

   

1.00

0.93

0.97

1.00

0.93

0.97

0.98

0.93

0.96

   

1.00

0.64

0.78

0.93

0.89

0.91

0.92

0.96

0.94

   

0.89

1.00

0.94

0.88

0.95

0.91

0.98

0.95

0.97

   

Overall

accuracy

0.87

Overall

accuracy

0.91

Overall

accuracy

0.93