Table 1 The statistical indices to estimate power optimal Inception-V4 models.

From: Forecasting for electricity demand utilizing enhanced inception-V4 using improved Osprey optimization

Statistical indices

Equations

The coefficient of determination (R2)

\(\:{R}^{2}=\:\frac{\left(\frac{1}{N}\right)\sum\:_{I=1}^{N}({Q}_{o}\left(i\right)-\stackrel{-}{{Q}_{o}}\:)({Q}_{f}\left(i\right)-\stackrel{-}{{Q}_{f}}\:)}{\sqrt{\left(\frac{1}{N}\right){\sum\:}_{i=1}^{N}({Q}_{o}\left(i\right)-{\stackrel{-}{Q}}_{o}{)}^{2}}\sqrt{\left(\frac{1}{N}\right)\sum\:_{i=1}^{N}{({Q}_{f}\left(i\right)-{\stackrel{-}{Q}}_{f})}^{2}}}\)

The Nash-Sutcliffe coefficient (NSE)

\(\:NSE=1-\frac{{\sum\:}_{i=1}^{N}({Q}_{o}\left(i\right)-{Q}_{f}(i){)}^{2}}{{\sum\:}_{i=1}^{N}({{Q}_{o}\left(i\right)-\left(\stackrel{-}{{Q}_{o}}\right))}^{2}}\)

Root Mean Square Error (RMSE)

\(\:RMSE=\frac{1}{n}{\sum\:}_{i=1}^{n}{\left({Q}_{o}\right(i)-{Q}_{f}(i\left)\right)}^{2}\)