Table 1 Quantitative comparison results on the LOL-V125, LOL-V226and mixed datasets. Bold indicates the best results, and italic indicates the second-best results. LIME18represents a traditional method, ZeroDec++7and PairLIE54 represent unsupervised learning methods, and the others represent supervised learning methods.

From: Bilateral enhancement network with signal-to-noise ratio fusion for lightweight generalizable low-light image enhancement

Methods

LOL-V1

LOL-V2

Mix Data

PSNR \(\uparrow\)

SSIM\(\uparrow\)

NIQE \(\downarrow\)

PSNR\(\uparrow\)

SSIM\(\uparrow\)

NIQE\(\downarrow\)

NIQE\(\downarrow\)

LIME18

17.22

0.50

5.32

15.77

0.46

5.37

4.57

ZeroDec++7

15.35

0.57

7.86

18.49

0.58

8.05

4.53

PairLIE54

18.47

0.75

4.25

19.88

0.78

4.34

3.90

RetinexNet25

17.86

0.78

6.37

17.37

0.76

9.09

5.68

MBLLEN8

17.90

0.70

2.50

18.00

0.72

3.11

3.32

KIND9

20.38

0.83

5.45

23.78

0.88

4.96

3.87

KIND++55

21.80

0.84

5.17

22.21

0.84

4.89

3.74

IAT56

23.38

0.81

3.92

23.50

0.82

4.19

4.71

DecNet57

22.49

0.82

4.51

22.56

0.84

4.83

4.26

FLW-Net51

23.84

0.83

4.22

25.71

0.87

4.09

3.93

BiEnNet (LOL-V1)

25.88

0.86

2.75

29.06

0.89

3.08

3.49

BiEnNet (LOL-V2)

26.44

0.87

2.63

29.66

0.90

3.01

3.48