Table 2 Summary of related works-based wavelet analysis with machine learning techniques.

From: A comprehensive guide to selecting suitable wavelet decomposition level and functions in discrete wavelet transform for fault detection in distribution networks

Ref no.

Year

Feature extraction combinations

System typology

Rated voltage simulation via

Fault type

Accuracy (%)

Training time (S)

R47

2021

WPT + SVM

Eskom- power line

132 kV/MATLAB

LIFs

98.85

Nr

R48

2021

DWT + SVM

IEEE-33 bus

24.90 kV/DIgSILENT

LIFs

99.03

Nr

R49

2022

DWT + SVM

IEEE-33 bus

12.66 kV/MATLAB

LIFs

100

12.246

R50

2022

DWT + SVM

IEEE-33 bus

12.66 kV/MATLAB

LIFs

87.10

0.400

R51

2023

CNN + SVM

IEEE-123 bus

4.16 kV/MATLAB

LIFs

98.36

Nr

R52

2023

DWT + SVM

IEEE-9 bus

MATLAB/SIMULINK

LIFs

99.30

0.910

R53

2024

DWT + DNN

11-kV, Two-area cluster

MATLAB/SIMULINK

LIFs

100

Nr

R54

2024

DWT + RBFNN

IEEE-5 bus

MATLAB/SIMULINK

LIFs

100

Nr

R55

2024

RL + CNN (DML)

IEEE-33 bus

12.66 kV/MATLAB

HIFs

98.69

0.03261

R56

2024

ST + CNN (DML)

IEEE-13 bus

4.16 kV/MATLAB

LIFs + HIFs

99.73

Nr

R57

2024

DWT + DTE and ANN

Genuine isolated MV distribution

35 kV/MATLAB

LIFs

100

Nr

  1. CNN   convolutional neural network, DTE  decision tree ensemble, DNN  deep neural network, DWT  discrete wavelet transform, EML ensembled machine learning, DML deep machine learning, Nr not reported, RL reinforcement learning, RBFNN  radial basis function neural network, WPT wavelet packet transform, ST  stockwell transform.