Table 2 The numerical simulation values for theoretical analysis of system 1.

From: Dynamic analysis and optimal control of competitive information dissemination model

Equilibrium point

Verified theorem

Parameter values

Basic regeneration number

\({E^0}\)

Theorem 1

\(B = 1,{\alpha _1} = \beta = {\theta _1} = {\theta _2} = 0.1,{\alpha _2} = 0.01,\)

\(R_0^P = 0.33 < 1\)

Theorem 2

\({\lambda _1} = {\lambda _2} = {\gamma _1} = {\gamma _2} = {\varepsilon _1} = {\varepsilon _2} = \mu = 0.1\)

\(R_0^A = 0.33 < 1\)

\({E^{1,*}}\)

Theorem 3

\(B = 1,{\alpha _1} = {\alpha _2} = \beta = {\theta _1} = {\theta _2} = 0.3,\)

\(R_0^P = 3 > 1\)

Theorem 4

\({\lambda _1} = {\lambda _2} = {\gamma _1} = {\gamma _2} = {\varepsilon _1} = {\varepsilon _2} = \mu = 0.1\)

\(R_0^A = 10 > 1\)

\({E^{2,*}}\)

Theorem 5

\(B = 1,{\alpha _1} = 0.01,{\alpha _2} = \beta = {\theta _1} = {\theta _2} = 0.3,\)

\(R_0^P = 3 > 1\)

Theorem 6

\({\lambda _1} = {\lambda _2} = {\gamma _1} = {\gamma _2} = {\varepsilon _1} = {\varepsilon _2} = \mu = 0.1\)

\(R_0^A = 0.33 < 1\)

\({E^{3,*}}\)

Theorem 7

\(B = 1,{\alpha _1} = \beta = {\theta _1} = {\theta _2} = 0.3,{\alpha _2} = 0.01,\)

\(R_0^P = 0.033 < 1\)

Theorem 8

\({\lambda _1} = {\lambda _2} = {\gamma _1} = {\gamma _2} = {\varepsilon _1} = {\varepsilon _2} = \mu = 0.1\)

\(R_0^A = 10 > 1\)