Table 1 Network parameter structure.

From: Gaussian decomposition method for full waveform data of LiDAR base on neural network

Layers

Kernel size

Output size

Parameters

Input layer

\

\(\left(1\times 1\times 4096\right)\)

\

Convolution

\(\left(1\times 3, 1\right)\)

\(\left(16\times 1\times 4096\right)\)

96

Dense block 1

\(\left[\begin{array}{c}\left(1\times 5, 1\right)\\ \left(1\times 1, 1\right)\end{array}\right]\times 7\)

\(\left(128\times 1\times 4096\right)\)

373,700

Transition layer

\(\left(1\times 1, 1\right)\)

\(\left(16\times 1\times 4096\right)\)

3120

……

Dense block 8

\(\left[\begin{array}{c}\left(1\times 5, 1\right)\\ \left(1\times 1, 1\right)\end{array}\right]\times 7\)

\(\left(128\times 1\times 4096\right)\)

373,700

Transition layer

\(\left(1\times 1, 1\right)\)

\(\left(16\times 1\times 4096\right)\)

3120

Convolution

\(\left(1\times 1, 1\right)\)

\(\left(1\times 1\times 4096\right)\)

49

Output layer

\

\(\left(1\times 4096\right)\)

\