Table 1 LCA Net architecture.

From: ODD-Net: a hybrid deep learning architecture for image dehazing

Layer

Output shape

Trainable parameters

Input_layer

(Batch, 352, 1216, 3)

0

Conv2d_1(encoder)

(Batch, 352, 1216, 50)

1400

Average_pool_1 (encoder)

(Batch, 176, 608, 50)

0

Conv2d_2(encoder)

(Batch, 176, 608, 50)

22,550

Average_pool_2 (encoder)

(Batch, 88, 304, 50)

0

Dense_1 (encoder)

(Batch, 88, 304, 10)

510

Dense_2 (encoder)

(Batch, 88, 304, 10)

110

Conv2d_Transpose_1 (decoder)

(Batch, 88, 304, 50)

4550

UpSample2d_1 (decoder)

(Batch, 176, 608, 50)

0

Conv2d_Transpose_2 (decoder)

(Batch, 176, 608, 50)

22,550

UpSample2d_2 (decoder)

(Batch, 352, 1216, 50)

0

Conv2d_Transpose_3 (decoder)

(Batch, 352, 1216, 3)

1353