Table 7 Classification accuracy, precision, recall, and F1 score of the original pre-trained model on the test set.
From: An efficient method for identifying surface damage in hydraulic concrete buildings
Models | Accuracy mean (%) | Accuracy Std | Precision | Recall | f1-score | Training time (s) | Infer time (s) |
|---|---|---|---|---|---|---|---|
ResNet-18 | 82.89 | 1.34 | 0.83 | 0.83 | 0.83 | 3.14 | 0.78 |
ResNet-34 | 80.14 | 1.2 | 0.8 | 0.8 | 0.8 | 3.15 | 0.14 |
ResNet-50 | 82.91 | 0.79 | 0.83 | 0.83 | 0.83 | 4.53 | 0.23 |
ResNet-101 | 82.14 | 1.08 | 82.24 | 0.82 | 0.82 | 8.32 | 0.41 |
ResNet-152 | 81.73 | 0.49 | 81.85 | 0.82 | 0.82 | 12.16 | 0.6 |
MobileNet-v1 | 80.54 | 1.26 | 80.68 | 0.81 | 0.81 | 4.17 | 0.14 |
MobileNet-v2 | 85.58 | 1.1 | 85.55 | 0.86 | 0.86 | 4.72 | 0.22 |
MobileNet-v3-small | 80.18 | 1.02 | 79.97 | 0.8 | 0.8 | 4.66 | 0.22 |
MobileNet-v3-large | 84.42 | 0.7 | 84.35 | 0.84 | 0.84 | 5.39 | 0.26 |
MobileNet-v4 | 83.2 | 0.92 | 83.18 | 0.83 | 0.83 | 10.87 | 0.53 |
EfficientNet-B0 | 82.35 | 4.39 | 82.37 | 0.82 | 0.82 | 10.24 | 0.52 |
EfficientNet-B1 | 79.2 | 3.76 | 79.1 | 0.79 | 0.79 | 10.24 | 0.52 |
EfficientNet-B2 | 79.93 | 4.52 | 79.84 | 0.8 | 0.8 | 10.24 | 0.52 |
EfficientNet-B3 | 81.69 | 1.3 | 81.64 | 0.82 | 0.82 | 10.24 | 0.52 |
EfficientNet-B4 | 74.49 | 3.33 | 74.69 | 0.74 | 0.74 | 10.24 | 0.52 |
EfficientNet-B5 | 79.84 | 2.6 | 79.88 | 0.8 | 0.8 | 10.24 | 0.52 |
EfficientNet-B6 | 73.9 | 3.63 | 73.88 | 0.74 | 0.74 | 10.24 | 0.52 |
EfficientNet-B7 | 78.22 | 2.76 | 78.26 | 0.78 | 0.78 | 10.24 | 0.52 |
EfficientNet-B8 | 84.45 | 2.47 | 84.41 | 0.84 | 0.84 | 10.24 | 0.52 |
EfficientNet-L2 | 75.03 | 4.28 | 76.0 | 0.75 | 0.75 | 10.24 | 0.52 |
RegNetY-200MF | 76.72 | 6.67 | 76.78 | 0.77 | 0.77 | 6.3 | 0.32 |
RegNetY-400MF | 73.54 | 5.24 | 73.84 | 0.74 | 0.73 | 6.3 | 0.32 |
RegNetY-600MF | 80.95 | 3.38 | 80.92 | 0.81 | 0.81 | 6.3 | 0.32 |
RegNetY-800MF | 83.52 | 3.15 | 83.57 | 0.84 | 0.83 | 6.3 | 0.32 |
RegNetY-1.6GF | 76.11 | 3.4 | 76.33 | 0.76 | 0.76 | 6.3 | 0.32 |
RegNetY-3.2GF | 82.08 | 2.11 | 82.18 | 0.82 | 0.82 | 6.3 | 0.32 |
RegNetY-4.0GF | 75.45 | 3.14 | 75.64 | 0.75 | 0.75 | 6.3 | 0.32 |
RegNetY-6.4GF | 79.9 | 2.72 | 80.08 | 0.8 | 0.8 | 6.3 | 0.32 |
RegNetY-8.0GF | 80.08 | 2.0 | 80.47 | 0.8 | 0.8 | 6.3 | 0.32 |
RegNetY-12GF | 86.22 | 1.51 | 86.29 | 0.86 | 0.86 | 6.3 | 0.32 |
RegNetY-16GF | 86.26 | 1.4 | 86.34 | 0.86 | 0.86 | 6.3 | 0.32 |
RegNetY-32GF | 82.96 | 2.4 | 83.2 | 0.83 | 0.86 | 6.3 | 0.32 |