Table 7 Classification accuracy, precision, recall, and F1 score of the original pre-trained model on the test set.

From: An efficient method for identifying surface damage in hydraulic concrete buildings

Models

Accuracy mean (%)

Accuracy Std

Precision

Recall

f1-score

Training time (s)

Infer time (s)

ResNet-18

82.89

1.34

0.83

0.83

0.83

3.14

0.78

ResNet-34

80.14

1.2

0.8

0.8

0.8

3.15

0.14

ResNet-50

82.91

0.79

0.83

0.83

0.83

4.53

0.23

ResNet-101

82.14

1.08

82.24

0.82

0.82

8.32

0.41

ResNet-152

81.73

0.49

81.85

0.82

0.82

12.16

0.6

MobileNet-v1

80.54

1.26

80.68

0.81

0.81

4.17

0.14

MobileNet-v2

85.58

1.1

85.55

0.86

0.86

4.72

0.22

MobileNet-v3-small

80.18

1.02

79.97

0.8

0.8

4.66

0.22

MobileNet-v3-large

84.42

0.7

84.35

0.84

0.84

5.39

0.26

MobileNet-v4

83.2

0.92

83.18

0.83

0.83

10.87

0.53

EfficientNet-B0

82.35

4.39

82.37

0.82

0.82

10.24

0.52

EfficientNet-B1

79.2

3.76

79.1

0.79

0.79

10.24

0.52

EfficientNet-B2

79.93

4.52

79.84

0.8

0.8

10.24

0.52

EfficientNet-B3

81.69

1.3

81.64

0.82

0.82

10.24

0.52

EfficientNet-B4

74.49

3.33

74.69

0.74

0.74

10.24

0.52

EfficientNet-B5

79.84

2.6

79.88

0.8

0.8

10.24

0.52

EfficientNet-B6

73.9

3.63

73.88

0.74

0.74

10.24

0.52

EfficientNet-B7

78.22

2.76

78.26

0.78

0.78

10.24

0.52

EfficientNet-B8

84.45

2.47

84.41

0.84

0.84

10.24

0.52

EfficientNet-L2

75.03

4.28

76.0

0.75

0.75

10.24

0.52

RegNetY-200MF

76.72

6.67

76.78

0.77

0.77

6.3

0.32

RegNetY-400MF

73.54

5.24

73.84

0.74

0.73

6.3

0.32

RegNetY-600MF

80.95

3.38

80.92

0.81

0.81

6.3

0.32

RegNetY-800MF

83.52

3.15

83.57

0.84

0.83

6.3

0.32

RegNetY-1.6GF

76.11

3.4

76.33

0.76

0.76

6.3

0.32

RegNetY-3.2GF

82.08

2.11

82.18

0.82

0.82

6.3

0.32

RegNetY-4.0GF

75.45

3.14

75.64

0.75

0.75

6.3

0.32

RegNetY-6.4GF

79.9

2.72

80.08

0.8

0.8

6.3

0.32

RegNetY-8.0GF

80.08

2.0

80.47

0.8

0.8

6.3

0.32

RegNetY-12GF

86.22

1.51

86.29

0.86

0.86

6.3

0.32

RegNetY-16GF

86.26

1.4

86.34

0.86

0.86

6.3

0.32

RegNetY-32GF

82.96

2.4

83.2

0.83

0.86

6.3

0.32