Table 8 Classification accuracy, precision, recall, and F1 score of the pre-trained model (fine-tuned) on the test set.

From: An efficient method for identifying surface damage in hydraulic concrete buildings

Models

Accuracy Mean (%)

Accuracy Std

Precision

Recall

F1-score

Training time (s)

Infer time (s)

ResNet-18

84.58

0.35

0.85

0.85

0.84

3.89

0.78

ResNet-34

81.41

0.54

0.81

0.81

0.81

3.51

0.14

ResNet-50

82.16

0.93

0.82

0.82

0.82

4.97

0.24

ResNet-101

77.51

1.03

0.78

0.78

0.77

8.78

0.41

ResNet-152

78.51

0.84

0.79

0.79

0.78

12.63

0.6

MobileNet-v1

85.62

2.16

0.87

0.86

0.85

2.2

0.14

MobileNet-v2

87.16

0.67

0.87

0.87

0.87

1.43

0.22

MobileNet-v3-small

72.28

1.64

0.73

0.72

0.72

1.33

0.22

MobileNet-v3-large

78.0

1.06

0.78

0.78

0.78

1.53

0.26

MobileNet-v4

87.74

1.23

0.88

0.88

0.87

3.0

0.53

EfficientNet-B0

89.52

4.07

0.9

0.9

0.89

11.2

0.65

EfficientNet-B1

86.5

4.44

0.87

0.86

0.86

11.2

0.65

EfficientNet-B2

85.38

5.79

0.85

0.85

0.85

11.2

0.65

EfficientNet-B3

85.63

3.89

0.86

0.86

0.86

11.2

0.65

EfficientNet-B4

81.95

5.31

0.82

0.82

0.82

11.2

0.65

EfficientNet-B5

86.55

4.14

0.87

0.87

0.86

11.2

0.65

EfficientNet-B6

82.34

4.75

0.82

0.82

0.82

11.2

0.65

EfficientNet-B7

84.91

3.46

0.85

0.85

0.85

11.2

0.65

EfficientNet-B8

88.34

2.96

0.88

0.88

0.88

11.2

0.65

EfficientNet-L2

88.74

1.91

0.89

0.89

0.89

11.2

0.65

RegNetY-200MF

83.82

2.31

0.84

0.84

0.84

5.41

0.32

RegNetY-400MF

81.41

0.38

0.81

0.81

0.81

5.41

0.32

RegNetY-600MF

86.1

1.63

0.86

0.86

0.86

5.41

0.32

RegNetY-800MF

89.12

1.87

0.89

0.89

0.89

5.41

0.32

RegNetY-1.6GF

85.43

1.04

0.85

0.85

0.85

5.41

0.32

RegNetY-3.2GF

87.59

0.75

0.88

0.88

0.87

5.41

0.32

RegNetY-4.0GF

83.42

0.93

0.83

0.83

0.83

5.41

0.32

RegNetY-6.4GF

84.98

1.35

0.85

0.85

0.85

5.41

0.32

RegNetY-8.0GF

87.94

1.33

0.88

0.88

0.88

5.41

0.32

RegNetY-12GF

90.35

1.0

0.9

0.9

0.9

5.41

0.32

RegNetY-16GF

88.66

1.77

0.89

0.89

0.89

5.41

0.32

RegNetY-32GF

91.34

1.33

0.91

0.91

0.89

5.41

0.32