Table 8 Classification accuracy, precision, recall, and F1 score of the pre-trained model (fine-tuned) on the test set.
From: An efficient method for identifying surface damage in hydraulic concrete buildings
Models | Accuracy Mean (%) | Accuracy Std | Precision | Recall | F1-score | Training time (s) | Infer time (s) |
|---|---|---|---|---|---|---|---|
ResNet-18 | 84.58 | 0.35 | 0.85 | 0.85 | 0.84 | 3.89 | 0.78 |
ResNet-34 | 81.41 | 0.54 | 0.81 | 0.81 | 0.81 | 3.51 | 0.14 |
ResNet-50 | 82.16 | 0.93 | 0.82 | 0.82 | 0.82 | 4.97 | 0.24 |
ResNet-101 | 77.51 | 1.03 | 0.78 | 0.78 | 0.77 | 8.78 | 0.41 |
ResNet-152 | 78.51 | 0.84 | 0.79 | 0.79 | 0.78 | 12.63 | 0.6 |
MobileNet-v1 | 85.62 | 2.16 | 0.87 | 0.86 | 0.85 | 2.2 | 0.14 |
MobileNet-v2 | 87.16 | 0.67 | 0.87 | 0.87 | 0.87 | 1.43 | 0.22 |
MobileNet-v3-small | 72.28 | 1.64 | 0.73 | 0.72 | 0.72 | 1.33 | 0.22 |
MobileNet-v3-large | 78.0 | 1.06 | 0.78 | 0.78 | 0.78 | 1.53 | 0.26 |
MobileNet-v4 | 87.74 | 1.23 | 0.88 | 0.88 | 0.87 | 3.0 | 0.53 |
EfficientNet-B0 | 89.52 | 4.07 | 0.9 | 0.9 | 0.89 | 11.2 | 0.65 |
EfficientNet-B1 | 86.5 | 4.44 | 0.87 | 0.86 | 0.86 | 11.2 | 0.65 |
EfficientNet-B2 | 85.38 | 5.79 | 0.85 | 0.85 | 0.85 | 11.2 | 0.65 |
EfficientNet-B3 | 85.63 | 3.89 | 0.86 | 0.86 | 0.86 | 11.2 | 0.65 |
EfficientNet-B4 | 81.95 | 5.31 | 0.82 | 0.82 | 0.82 | 11.2 | 0.65 |
EfficientNet-B5 | 86.55 | 4.14 | 0.87 | 0.87 | 0.86 | 11.2 | 0.65 |
EfficientNet-B6 | 82.34 | 4.75 | 0.82 | 0.82 | 0.82 | 11.2 | 0.65 |
EfficientNet-B7 | 84.91 | 3.46 | 0.85 | 0.85 | 0.85 | 11.2 | 0.65 |
EfficientNet-B8 | 88.34 | 2.96 | 0.88 | 0.88 | 0.88 | 11.2 | 0.65 |
EfficientNet-L2 | 88.74 | 1.91 | 0.89 | 0.89 | 0.89 | 11.2 | 0.65 |
RegNetY-200MF | 83.82 | 2.31 | 0.84 | 0.84 | 0.84 | 5.41 | 0.32 |
RegNetY-400MF | 81.41 | 0.38 | 0.81 | 0.81 | 0.81 | 5.41 | 0.32 |
RegNetY-600MF | 86.1 | 1.63 | 0.86 | 0.86 | 0.86 | 5.41 | 0.32 |
RegNetY-800MF | 89.12 | 1.87 | 0.89 | 0.89 | 0.89 | 5.41 | 0.32 |
RegNetY-1.6GF | 85.43 | 1.04 | 0.85 | 0.85 | 0.85 | 5.41 | 0.32 |
RegNetY-3.2GF | 87.59 | 0.75 | 0.88 | 0.88 | 0.87 | 5.41 | 0.32 |
RegNetY-4.0GF | 83.42 | 0.93 | 0.83 | 0.83 | 0.83 | 5.41 | 0.32 |
RegNetY-6.4GF | 84.98 | 1.35 | 0.85 | 0.85 | 0.85 | 5.41 | 0.32 |
RegNetY-8.0GF | 87.94 | 1.33 | 0.88 | 0.88 | 0.88 | 5.41 | 0.32 |
RegNetY-12GF | 90.35 | 1.0 | 0.9 | 0.9 | 0.9 | 5.41 | 0.32 |
RegNetY-16GF | 88.66 | 1.77 | 0.89 | 0.89 | 0.89 | 5.41 | 0.32 |
RegNetY-32GF | 91.34 | 1.33 | 0.91 | 0.91 | 0.89 | 5.41 | 0.32 |