Table 9 Numerical results of classification experiments integrating discriminative feature selection and random forest.

From: An efficient method for identifying surface damage in hydraulic concrete buildings

Condition

With random forest

With feature selection & random forest

Models

ResNet

MobileNet

EfficientNet

RegNetY

ResNet

MobileNet

EfficientNet

RegNetY

Trainable parameters

4722692

1484164

1134516

1593796

4722692

1484164

1134516

1593796

Accuracy

0.89

0.8855

0.911

0.9102

0.892

0.8932

0.9142

0.917

Precision

0.8889

0.8855

0.9106

0.91

0.8911

0.8945

0.9139

0.9167

Recall

0.89

0.8855

0.911

0.9102

0.892

0.8932

0.9142

0.917

F1-Score

0.889

0.8834

0.91

0.91

0.8913

0.8921

0.9133

0.9167

Original dimension

512

960

1280

768

512

960

1280

768

Final dimension

512

960

1280

768

280

240

140

280

Training Time(s)

4.79

4.67

12.53

5.61

8.83

6.74

10.14

12.06

Infer time (s)

1.62

1.71

1.8

1.27

0.05

0.1

0.1

0.0324