Table 4 Comparison of the proposed model with the literature.

From: Intelligent skin disease prediction system using transfer learning and explainable artificial intelligence

Author

Year

Technique

Use of XAI

Accuracy (%)

Misclassification rate (%)

Ali et al.47

2022

VGG16

ResNet50

InceptionV3

Ensemble

No

81.48 ± 6.87

82.96 ± 4.57

74.07 ± 3.78

79.26 ± 1.05

18.52 ± 6.87

17.04 ± 4.57

25.93 ± 3.78

20.74 ± 1.05

Burak Gülmez48

2022

Ensemble approach

No

84.2

15.8

Irmak et al.49

2022

MobileNetV2 VGG16

VGG19

No

91.38

83.62

78.45

8.62

16.38

21.55

Singh and Songare 50

2022

VGG-16

ResNet50

InceptionV3 GoogLeNet

No

83.85

85.38

86.37

88.27

16.15

14.62

13.63

11.73

Sharma et al.51

2023

ResNet18-based model

No

84.59

15.41

Sethy et al.52

2023

Darknet 19

Improved Darknet 19

No

81.4

85.49

18.6

14.51

Uysal53

2023

CNN-LSTM hybrid model

No

87

13

Ariansyah et al.54

2023

CNN

VGG16

No

64.52

83.33

35.48

16.67

Kundu et al.55

2023

SVM

KNN

RestNet50

ViT

No

65

84

91

93

35

16

9

7

Aqsa Akram et al.56

2024

SkinMarkNet

No

90.615

9.385

Proposed model

2024

VGG16 empowered with LRP

Yes

93.29

6.71